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Abstract

Using panel data for 99 countries, we confirm that the measured elasticity of

prices with respect to money is higher, and closer to unity, the higher is money

growth and the longer the time horizon over which the data are averaged. We

propose two contexts within which to explain this result. In one, the true

model of inflation involves a lagged response to money growth. In the other,

there is negative correlation between shocks to inflation and money growth.

Our empirical results can be explained if high-money-growth countries have (1)

shorter lags or (2) less negative correlation, when compared to countries with

low money growth.

JEL Codes: E31, E47, E52,C32
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1 Introduction

Studies of the relationship between inflation and money growth are numerous and

vary by historical period, country sample, and method. To one extent or another,

all test the quantity theory of money – that is, whether the elasticity of prices with
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respect to money is unity. One common approach is to use cross-country, long-run,

time-averaged data in a regression of inflation on money growth and real output

growth. This produces estimated coefficients near unity only if the sample contains

countries with high money growth. Moreover, as the time horizon over which the

data are averaged falls, the estimated coefficient also falls, and in a pronounced man-

ner for countries with low money growth.1 Our purpose in this paper is twofold: to

corroborate these empirical ‘facts’ and to explain this pattern of estimated coeffi-

cients even if the true coefficient is unity.

Using a panel of 99 countries with data sampled at annual, half-decade and

decade intervals, as well as at the cross-sectional level, we confirm that the money

growth-inflation relationship is different for low-money-growth countries than for

high-money-growth countries. We also find that greater time-averaging of the data

increases the estimate from a conventional regression of inflation on money growth

and output growth. For high-money-growth countries, the effect of time-averaging

on the relationship between money growth and inflation flattens out quickly as time-

averaging increases, but this is not true for low-money-growth countries. We propose

two explanations for this empirical pattern. Both are worked out in the context of

money growth that is positively serially correlated, an assumption that appears to

have empirical support.

Our first explanation is based on a model in which inflation is related to a

distributed lag in money growth. To get the differential effects between high- and

low-money-growth countries that we observe, it must be the case that the inflation

responses of high-money-growth countries are associated with a shorter lag structure

than in low-money-growth countries. When the true model contains only one lag of

money growth, we demonstrate that the probability limit of the estimated coefficient

using averaged data is equal to the true long-run elasticity as the averaging interval

1The impact of temporal aggregation on empirical estimates has been studied for a long time
dating back to Moriguchi (1970) and Zellner and Montmarquette (1971). In these papers, the
temporal aggregation problems addressed arise when a researcher has data sampled at a longer
frequency than appropriate for the underlying theory. We have temporal aggregation problems in
reverse – the data are sampled at a finer frequency than has been thought appropriate for estimating
the theoretical long run relationship between inflation and money.
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gets very large. However, if the true model has more than one lag, this is not true;

the estimated relationship will always fall short of the true relationship.

Our second explanation is based on a model in which inflation shocks are off-

set by the monetary authority. A Taylor Rule or explicit inflation targeting, for

example, would introduce negative correlation between the errors in money growth

and inflation. Alternatively, if shocks to money demand are offset by the monetary

authority, or there is measurement error that affects money growth and inflation

inversely, then negative correlation between shocks to money growth and inflation

may be present. In either case, this type of correlation induces negative bias in the

estimated elasticity of inflation with respect to money growth. We show that time-

averaging mitigates the bias as the averaging horizon increases, if money growth

is positively serially correlated. Because low-money-growth countries may be more

likely to fit this second explanation, we should expect that the estimated relationship

between money growth and inflation will be smaller for low-money-growth countries

than for high-money-growth countries.

There is a large body of empirical work that has yielded empirical findings that

are consistent with our own findings and the explanations we offer. The long-run

relationship between inflation and money growth has been investigated by Vogel

(1974), Barro (1990), Duck (1993), McCandless and Weber (1995), Gerlach (1995),

and Lucas (1996) using a cross-section of countries. This work generally supports

the coefficient of unity on money growth, but if the sample is reduced by taking away

the countries with the highest money growth, the coefficient falls and the confidence

interval no longer contains one.

Single-country studies like Lucas (1980) find the quantity theory of money holds

for the United States when using “filtered” data. Sargent and Surico (2011) find that

the unitary elasticity hypothesis breaks down in the United States when monetary

rules are introduced. Using a distributed lag model, McCallum and Nelson (2010)

find qualified support for the unitary elasticity of money growth for the United

States. They also test proportionality for the G-7 countries and find little support.

They argue that if the true process that generates inflation involves lags of money
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growth, averaging may not allow the researcher to accurately uncover the full effect

of money – a claim that we investigate.

Panel studies have also been applied to test the quantity theory of money. Teles

and Uhlig (2013) conjecture that widespread inflation targeting, whether tacit or

not and beginning as early as 1990, was responsible for the breakdown in the money

growth-inflation relationship among OECD countries after 1990. Dwyer and Fisher

(2009) report that the correlation between money growth and inflation is close to

unity for high inflation countries, but that the correlation between money growth

and inflation declines at lower rates of money growth, a finding that echoes Gerlach

(1995). They also claim that when countries target inflation and the target is seri-

ally correlated, the correlation between money growth and inflation rises with time

aggregation. Frain (2004) examines the unitary elasticity hypothesis by focusing on

high- and low-inflation countries. He uses recursive regression and does not reject

it for either group. DeGrauwe and Polan (2005) investigate the effect of both in-

creasing time aggregation and increasing magnitudes of money growth for a panel of

countries. They find virtually no relationship between money growth and inflation

when money growth is low.

The paper is organized as follows. In Section 2 we discuss the sources and

construction of the data. Section 3 contains our long-run results using the country-

average cross-section data for our two sub-samples of low-money-growth countries

and high-money-growth countries. Section 4 shows our panel results at three levels

of time aggregation – decade, half-decade, and annual. Section 5 lays out the model

structure, using the simplest, counterfactual case. Section 6 analyzes a model based

on differences in lag structure that is consistent with the different empirical results

for low- and high-money-growth countries. Section 7 offers an alternative expla-

nation that is based on negative correlation between money growth and inflation.

Section 8 concludes.
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2 Data

Our data on money and prices come from the International Monetary Fund, In-

ternational Financial Statistics (CD-ROM, 2014).2 We use data sampled annually.

The price level is measured by the consumer price index (CPI). We measure annual

inflation – ∆p – using the first-difference in the natural log of the CPI. For most

countries, the time series coverage of the CPI is consistent and widely-reported, al-

though the initial year varies widely. The money data are more problematic: the

definition of money is not consistent across countries, and the IFS reports two ver-

sions of broad money, M2 and MQM (money plus quasi-money). For those countries

that report both M2 and MQM, we select one or the other using an algorithm that

balances length of series and its latest date. We select M2 if it ends at least 3 years

later than MQM and has no more than 10 fewer observations than MQM. Oth-

erwise, we choose MQM. Whichever series we choose, we call it “M2”.3 We create

our measure of annual money growth – ∆m – by taking the first-difference of the

natural log of M2.

We also collect data on real output for our study. We use data from the Penn

World Table v.8.0 which reports three distinct output series, available annually. We

use the national-accounts based series RGDPNA, which is similar to real output in

earlier versions of the PWT data. We measure annual output growth – ∆q – by

taking the first-difference of the natural log of RGDPNA.

We trim the data so that they are rectangular by country in the three variables

– ∆p, ∆m, and ∆q – that enter our regressions below. That is, for each country,

we take the largest possible data available for each country for which all three series

start and end on the same dates. We think it is important that the averaged data

cover the same time period for each variable in a given country. For some countries,

we have data from 1951-2011; for others, the start date may be as late as the early

2Data for the United Kingdom’s CPI prior to 1988 is from the Office of National Statistics.
3Our two measures of M2 are broadly comparable and where countries report both, the corre-

lation between the series is 0.69. Neither series, however, is available for as many countries as is
the CPI data. In general, MQM is a longer series than M2 but typically ends in 2008. While M2
coverage is shorter (having a later start year), it generally includes the year 2010 and therefore has
the advantage of including the financial crisis period.
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1990s. However, for inclusion in our data set, we require that each country have at

least 20 years of data.4 We are left with a sample of 99 countries.

3 Long Run, Cross-Section Results

Our first exercise is to examine the relationship between money growth and infla-

tion using annualized, long-run, cross-country averages. This relationship is shown

in Figure 1. The straight line has a slope of one and passes through the sample

averages of ∆mj (0.179) and ∆pj (0.121), where the subscript indexes the coun-

try. The relationship appears to be very strong: the points lie close to the line.

Three countries have money growth and inflation rates that are far above the mean

of the annualized averages. These countries are Argentina (ARG), the Democratic

Republic of Congo (formerly Zaire (ZAR)), and Brazil (BRA).

ARG
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Figure 1: Inflation and Money Growth by Country

4We also drop Ecuador. Irregularities in the money data made Ecuador an extreme outlier:
the difference between inflation and money growth was four standard deviations from the sample
cross-country mean.
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A striking feature of Figure 1 is the cloud of countries with low rates of money

growth. To see what is going on in this cloud, we divide our countries into two

groups. In the first are countries with long-run average M2 money growth rates less

than 15 percent per year; that is, with ∆mj < 0.15. We call these 58 countries

the “Low-Money-Growth Countries” or LMG countries. We call the remaining 41

countries with ∆mj ≥ 0.15 the “High-Money-Growth Countries” or HMG countries.

This division does not change throughout the paper. We chose the cut-off of 15

percent because it is a round number close to the mean (0.179) and the median

(0.137) of the long run country-average annualized money growth rates.5
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Figure 2: Inflation and Money Growth: LMG Countries

The cross-sectional relationship between money growth and inflation for the low-

money-growth (LMG) countries is shown in Figure 2. The points in this figure do

not cluster neatly along the straight line with slope of one. Figures 1 and 2 show

when the HMG countries are excluded, the relationship between money growth and

inflation is not only less precise, but also may be less than unitary in magnitude.

5We also used a 20 percent cutoff. The results here and in later Sections were little changed.
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Table 1: Inflation and Money Growth: Country Averages

Country Averages

∆pj = α+ β∆mj + δ∆qj + εj

Sample β̂ 95% Confidence Interval N R2

All 0.97*** 0.93 - 1.02 99 0.98

LMG 0.79*** 0.60 - 0.98 58 0.63

HMG 0.97*** 0.91 - 1.04 41 0.98

Note:***Significant at 0.01; ** at 0.05; * at 0.10.

In these figures, we have not accounted for real output growth. It may be that its

absence has a bigger impact on the estimated money growth-inflation relationship

for LMG countries because real output growth and money growth are similar in

magnitude. By contrast, in HMG countries, the effect of real output growth may be

marginalized by the effect of money growth.

We test whether this is the case, using the following the long-run, cross-section

regression equation:

∆pj = α+ β∆mj + δ∆qj + εj , j = 1...N (1)

where εj is assumed to be an iid random variable with mean 0 and variance σ2, and

N is the number of countries in the sample. We do not restrict the coefficients on

either money growth ∆m or real output growth ∆q.

We estimate Equation (1) for our sample of 99 countries and the sub-samples of

LMG and HMG countries. Our focus will be on the magnitude of β̂, and how close

it is to 1.0. The results are shown in Table 1.6 Row 1 presents the results using the

full sample of all 99 countries. The estimate β̂ is very close to 1.0 and the 95 percent

confidence interval contains 1.0. Moreover, 98 percent of the variation in inflation

across countries is explained by money growth and output growth.

In the second row of Table 1, we present the results with the sample restricted to

the LMG countries. The point estimate β̂ falls to 0.79. For this sample of countries,

6We also ran all of our results using the narrow measure of money M1. The estimates of β are
a bit lower, but the pattern of results is similar.
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the 95 percent confidence interval no longer contains 1.0. Contrast this with the

results in Row 3 for the HMG countries. For these countries, β̂ = 0.97 and the 95

percent confidence interval contains 1.0. A t-test of the difference between the β̂’s

for the high- and low-money-growth groups delivers a p-value of 0.03.7

Another way to gauge the effect of money growth on the estimated β is to

conduct recursive regressions. We order our cross-section of countries according to

their average money growth – from low to high – and then run a series of regressions

beginning with the first 20 countries, those with the lowest average money growth.

Each subsequent regression adds one country – the one with the next highest average

money growth – until we have incorporated all 99 countries. In Figure 3 we show

the estimated β′s and the 95 percent confidence boundary that result. Along the x-

axis, we show the rate of money growth that corresponds to the added country. The

vertical line at 0.15 separates the LMG group from the HMG group: 58 countries

reside to the left of the boundary, and 41 countries to the right. Like Gerlach

(1995), Frain (2004), and Dwyer and Fisher (2009), we find that β̂ rises and the

confidence bounds shrink as countries with higher money growth are added to the

sample. Further, we see that β̂ remains well below 1.0 at money growth rates less

than about 30 percent.

To illustrate how the sample over which we run the regression matters, we also

run reverse recursive regressions. The result of this exercise is shown in Figure

4. Now we assemble the countries in order of decreasing money growth. The first

sample includes the 20 countries with the highest average money growth over their

history. Subsequent regressions add one country at a time. The x-axis registers

the next lowest of the highest-money-growth countries added to the regression. The

confidence interval contains 1.0 in all cases, but the point estimate falls when coun-

tries with money growth less than 15 percent are added to the sample. We see that

the point estimate only declines below 1.0 when countries with money growth at 10

percent or lower are added.

7The p-value refers to the test on the coefficient of the interaction term with money growth
where we augmented (1) with a dummy variable for low money growth. The dummy was added to
the intercept and interacted with both money growth and real output growth.
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Taken as whole, the results in Table 1 and Figures 1 – 4 suggest that the evidence

in favor of a unit elasticity of prices with respect to money depends on the influence

of countries with high money growth. As we will see, this interpretation continues

to hold when we move from using country cross-section data to panel data.

4 Results for Different Time Aggregation

We now investigate the effect of averaging the data (“time aggregation”) at differ-

ent time horizons K using panel data. We construct three panels beginning with

calendar decade averages (K = 10), then proceed to calendar half-decade averages

(K = 5), and ending with annual data (K = 1). At each level, we consider three

different samples: all countries, the LMG countries, and the HMG countries.

Our estimating equation is:

∆pj,t = α+ β∆mj,t + δ∆qj,t + αj + λt + εj,t (2)

where j indexes the country, t indexes either decade, half-decade or year, αj are

the country fixed-effects, and δt are a complete set of time effects corresponding to

the level of time aggregation. Fixed effects estimation corrects for the omission of

country-specific, time-invariant, unobservable factors that might be correlated with

∆mj,t and bias our estimates of β. We use time effects because there may also be

time-specific events - like an oil price shock - that affect each country’s inflation rate

similarly.

In constructing the decade and half-decade averages for each country, we require

that at least 80 percent of the annual observations over the relevant period be

available. If they are not, we exclude these periods from the estimation.

The panel regression results are shown in Table 2. For decade and half-decade

data, the full panel results – see the rows labeled “All” in Table 2 – show that the

confidence interval around β̂ includes 1.0. For annual data, we estimate β̂ = 0.80,

and the confidence interval extends to 0.92.
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Table 2: Inflation and Money Growth: Panel Results

∆pj,t = α+ β∆mj,t + δ∆qj,t + αj + λt + εj,t

Decade Results (K = 10)

Sample β̂ 95% Confidence Interval Obs (N) R2

All 0.96*** 0.91-1.01 413 (99) 0.95

LMG 0.40** 0.28 - 0.52 241 (58) 0.55

HMG 0.97*** 0.92 - 1.02 172 (41) 0.96

Half-Decade Results (K = 5)

Sample β̂ 95% Confidence Interval Obs (N) R2

All 0.95*** 0.90-1.00 850 (99) 0.94

LMG 0.29** 0.20 - 0.38 497 (58) 0.47

HMG 0.96*** 0.92 - 1.02 353 (41) 0.95

Annual Results (K = 1)

Sample β̂ 95% Confidence Interval Obs (N) R2

All 0.80*** 0.68-0.92 4371 (99) 0.77

LMG 0.13** 0.09 - 0.17 2562 (58) 0.33

HMG 0.85*** 0.74 - 0.96 1809 (41) 0.80

NOTE: The number in parentheses is the number of countries N in the panel.

Standard errors clustered by country. Fixed Effects and time dummies included.

Note:***Significant at 0.01; ** at 0.05; * at 0.10.

The more interesting results concern the difference between the LMG and HMG

samples. First, the quantity theory prediction is rejected for the LMG countries

across all three panels, but for the HMG countries it is not rejected for the decade

and half-decade panels. Further, for the HMG countries, β̂ is much higher with the

annual data (0.80) than for the LMG countries (0.13). Second, time aggregation

matters for the estimate of β more for the LMG countries than for the HMG set.

For LMG nations, as the degree of time aggregation K rises from one year to five

years to ten years, β̂ increases from 0.13 to 0.29 to 0.40. In no case, moreover, does

the confidence interval contain 1.0, nor does it contain 0. For the HMG sample, on

the other hand, β̂ rises as we move from using annual data to half-decade-averaged
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data or from annual data to decade-averaged data. However, β̂ changes very little

as we transition from half-decade-averaged data to decade-averaged data.

5 A Simple Model of Inflation

Money appears to have a unit elastic effect on prices only - that is β is unity - when

money growth is high and when the data are aggregated over a long horizon. In

this section, to fix ideas and introduce notation, we consider a very simple model

of inflation. We assume a true model that features no lags in the inflation-money

growth relationship. We offer this model as a counterfactual to our results; this case

does not deliver the effects we find in the data.

In the interest of tractability and generality, going forward we use the following

notation: y ≡ ∆p and x ≡ ∆m. The true state of nature for any country is now

written:

yt = α+ β0xt + εt (3)

where t indexes time by year. In this simple model, β0 is the long-run elasticity;

if the quantity theory prediction is correct, then β0 = 1.0. Our results in Table 2

suggest that this is possible, and we will continue to focus on that possibility. At

this point, we assume that money growth xt is not serially correlated nor correlated

with the error εt at any lag – assumptions we will change below.

A regression using annual data – if (3) is true – will produce a consistent estimate

of β0. It is well-known that the probability limit of the OLS estimator of β0 is the

true value:

plim β̂0 = β0 +
σxε
σ2
x

= β0

where σxε and σ2
x are, respectively, the unobserved population covariance and vari-

ance, and σxε = 0 by assumption.

Now we consider running the simple regression using averaged data. Let YK,t,

XK,t, and ΛK,t be the K-period, non-overlapping averages of, respectively, y, x, and

13



ε that end in year t. That is, the average for x is:

XK,t =
1

K

K−1∑
i=0

xt−i (4)

and YK,t and ΛK,t are defined analogously. Notice that we have defined K so that

if K = 1, the data are not averaged.

Our interest from now on will center on the coefficient estimate - we call it β -

from the following regression using K-averaged data:

YK,t = γ + βXK,t + ΛK,t (5)

Now take the average of both sides of the true model in (3) to obtain:

YK,t = α+ β0XK,t + ΛK,t (6)

The OLS estimator of β in (5) is :

β̂ =
cov (Y,X)

var (X)
=

cov (α+ β0X + Λ, X)

var (X)
(7)

where “cov” and “var” are, respectively, the sampling covariance and variance. The

second equality in (7) uses the true value for Y from equation (6). Now take the

probability limit of β̂ in (7) to get:

p lim β̂ = β0 +
σXΛ

σ2
X

= β0 (8)

where σXΛ = 0. This holds true when there is no correlation between x and ε, either

contemporaneously or at any lag.

The important observation that comes out of this simple model is that averaging

the data should not affect the estimated coefficient in (5) — no matter whether

K = 1 or K > 1. This conclusion, however, does not fit the pattern of results across

Tables 1 – 2: we see that the estimates of β across different degrees of K-averaging
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are quite different, especially for the LMG countries.

Next, we provide two explanations for the pattern of results we observe.

6 First Explanation: Variable Lags

Our first explanation alters the true model from the previous section by incorporat-

ing lags of xt. This approach is most closely identified with the work of McCallum

and Nelson (2010). The true model is now:

yt = θ + β0xt + β1xt−1 + β2xt−2 + . . .+ βHxt−H + εt (9)

Equation (9) says that inflation is determined by a distributed lag of money growth

with H > 0 lags.

In a model with lags, the long-run elasticity of money with respect to prices is:

B =
H∑
i=0

βi (10)

We interpret the quantity theory of money to mean that B = 1.0.

We assume that money growth xt is an autocorrelated AR(1) process:

xt = φ+ ρxt−1 + ωt (11)

where 0 < ρ < 1. Further, we assume that there is no correlation between the errors

in (9) and (11) so that:

σεtωt = σxt−jεt = 0 j = 0, ...,H (12)

Using variations of this model, we can provide an explanation for the pattern of

coefficient estimates across Tables 1 – 2 for the HMG and LMG countries.
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6.1 Case 1: Short Lags, H = 1

We start with a short lag model letting H = 1 in (9): only current and one lag of

money growth are relevant to the generation of inflation. The long-run elasticity is

now B = β0 + β1 from (10). This lag structure may be more likely to characterize

HMG countries where firms raise prices quickly, within a year or two, after they

have come to expect that money will continue to grow at a high rate. We show that

the H = 1 case is the only case that can explain the pattern of empirical results

for the HMG countries, under the assumption that the quantity theory holds in the

long run.

Now, suppose that we do not know the true model and estimate (5) using K-

averaged data. In this case, when the true model is given by (9) – (12) and H = 1,

the estimator of the coefficient on money growth in (5) is given by:

β̂ =
cov (Y,X)

var (X)
=

cov (α+ β0X + β1X−1 + Λ, X)

var (X)
(13)

where X−1 is XK,t with each element x lagged one year. Taking the probability

limit gives:

p limβ̂ = β0 + β1
σXX−1

σ2
X

+
σXΛ

σ2
X

= β0 + β1
σXX−1

σ2
X

(14)

We find that two of the terms are the same as in (8), but we have an additional term

that is proportional to β1. As before, the last term drops out because the error is

uncorrelated with the elements of X.

In Appendices A.1 and A.2 we derive the expressions for σ2
X and σXX−1 under

the maintained autocorrelation in (11). There, we show that their ratio can be

expressed as:

σXX−1

σ2
X

≡ C (K, ρ) =

(
ρK +

(
ρ+ 1

ρ

)
M (K, ρ)

)
(K + 2M (K, ρ))

(15)

where:
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M (K, ρ) ≡
K−1∑
i=1

ρi (K − i) =
ρ
(
K − 1− ρK + ρK

)
(ρ− 1)2 (16)

The right-hand side of (16) is a well-known closed form solution for the summation

in (16).

Combine (14) and (15) to see that:

p limβ̂ = β0 + C (K, ρ)β1 (17)

Here, we see that the probability limit of β̂ will not equal the long-run elasticity

B = β0 + β1 unless C (K, ρ) = 1.

We now focus on the C (K, ρ) function which is a non-linear function of K and

ρ. Table 3 show values for C(K, ρ) for various values of K and ρ. Figure 5 graphs

C(K, ρ) for K = 1 to K = 20, and for two values of ρ: ρ = .50 (solid circles) and

ρ = .25 (hollow circles).

Table 3 and Figure 5 demonstrate the following properties of C(K, ρ):

1. 0 ≤ C (K, ρ) < 1

2. CK > 0 and Cρ > 0

3. limK→∞C (K, ρ) = 1.0

4. limρ→1C (K, ρ) = 1.0

5. C (1, ρ) = ρ

The function C(K, ρ) is less than one, rises as K or ρ increase, and approaches 1.0

as either K goes to infinity or ρ goes to 1.0.

Table 3 shows the effect of averaging at longer intervals: as the averaging interval

K → ∞ – which practically speaking occurs with 50 observations – C(K, ρ) gets

very close to 1.0. Thus, β1 receives nearly full weight in (17) and the expected

estimate of β̂, in the limit, captures the true long-run elasticity.
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Table 3: C(K, ρ) Function Values

C(K, ρ)

ρ→
K↓ 0 0.1 0.25 0.5 0.75 0.99

1 0.000 0.100 0.250 0.500 0.750 0.990

5 0.800 0.829 0.866 0.913 0.954 0.998

10 0.900 0.916 0.937 0.962 0.980 0.999

50 0.980 0.984 0.988 0.993 0.997 1.000

Note: cell entries calculated using equations (15) and (16).
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Figure 5: The C (K, ρ) Function

In essence, long time-averaging produces a ‘pseudo-correction’ to the estimate

β̂ from (5).8 However, in the case of K = 1 (i.e. using annual data), this pseudo-

correction does not arise when the true model contains only one (autocorrelated)

lag of xt: the p limβ̂ would equal the familiar omitted variables bias formula in

the presence of autocorrelated regressors: β0 + ρβ1. Indeed, Table 3 shows that

C(K, ρ) > ρ for any K > 1. This result establishes that time-averaging moves the

estimate β̂ closer to the true long run elasticity.

This important result helps explain the pattern of estimates of β across Tables 1

and 2. Recall that in Section 5 where H = 0, we showed that a model with no lags

cannot explain the pattern of estimates of β as K increases for the HMG countries.

If H were really zero, averaging the data over larger intervals K would have no effect

on β̂. This is not what we observe: we see that β̂ = 0.80 when K = 1 and β̂ = 0.97

8Note that when ρ = 0, C (K, 0) = 1 − 1
K

so that as K → ∞, C(K, 0) approaches 1, just as in
the case of a positive ρ.
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with the long run cross-section data.

By contrast, we see that if H = 1, then Table 3 shows (assuming ρ = .5) that

the weight on β1 in (17) goes from 0.50 to 0.913 to 0.962, as we increase K from 1

to 5 to 10. This pattern fits our results in Table 2 where we see the biggest change

occur between K = 1 and K = 5.

The case of H = 1 is central because averaged data in the limit delivers the

correct long-run elasticity B. This will not be true if the true lag length is longer,

as we show next.

6.2 Long Lags: H > 1

Here, we consider a longer lag structure in xt. This lag structure may be more

suitable for LMG countries than for HMG countries. In countries with low money

growth, changes to money growth may not be immediately detectable by agents and

there can be considerable difficulty in separating aggregate changes in demand from

relative changes. Prices will adjust slowly and may not fully reflect the change in

money for several years.

In this case, if we estimate (5) when the true model is (9) with H > 1, the

estimator is:

β̂ =
cov (Y,X)

var (X)
=

cov (α+ β0X + β1X−1 + β2X−2 + β3X−3...+ βHX−H + Λ, X)

var (X)

(18)

It can be shown, using the technique of Appendix A.2, that the covariance of any

lag j > 1 of X and X itself is:

σXX−j = ρj−1σXX−1 (19)

This means that we can now express the probability limit of the estimator from (5)

with data averaged over interval K as:

p limβ̂ = β0 + C (K, ρ)β1 + ρC (K, ρ)β2 + . . . ρH−1C (K, ρ)βH
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= β0 + C (K, ρ)
H∑
i=1

βiρ
i−1 (20)

where the function C(K, ρ) is the same as derived in Section 6.1. As before, the

C(K, ρ) function depends only on K and ρ; it does not depend on the lag length H

in the true model, nor does it vary with each lag i = 1, ...,H in (20).

We can see that:

p limβ̂ = β0 + C (K, ρ)
H∑
i=1

βiρ
i−1 < β0 +

H∑
i=1

βi ≡ B

Recall that in the short lag case where H = 1, p limβ̂ approached the long-run

elasticity B as K → ∞. Here, we see that when the true model has more than

one lag, the probability limit must be strictly less than B even when K → ∞.

Time averaging moves the estimate of β closer to B, but it will never reach it. To

the extent that ρ is small and the size of the true lag coefficients are small – the

difference
(
B − plim β̂

)
could be sizable. On the other hand, if ρ is small and the

true lag coefficients decay rapidly with β1 � βi−1, then p limβ̂ ≈ β0 + C (K, ρ)β1.

We can use Equation (20) to help explain two features of the pattern of LMG

coefficient estimates in Table 2. First, the smallest LMG coefficient in Table 2 is

0.13 for annual data (K = 1), so we can infer from (20) that β0 is smaller than that

– if we are justified in identifying the estimated β̂ with the p lim β̂. If the quantity

theory is even approximately correct, the small β̂ for annual data suggests that H is

large so that
∑H
i=1 βi is large. That is, the inference that β0 is quite small suggests

that if the quantity theory is true, then βi (i > 0) sum to (1 − β0), and they are

numerous and individually small in magnitude.9

Second, the fact that an increase in the length of K-averaging pushes the ex-

pected estimate of β̂ close to B without ever reaching it can explain why the LMG

coefficients in Table 2 go from 0.13 to 0.29 to 0.40 as K rises from 1 to 5 to 10. We

illustrate with a simple, but general, example. Assume that H = 10 and that

9Alternatively, it may also be that β1 is large and close to (1− β0) with
∑H

i=2
βi very small. In

this latter case, the model is approximated by the H = 1 case.
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β0 = 0.10. Further, assume that each of the 10 lag coefficients are the same:

βi = β̄ = 1−0.10
10 = 0.09 (for 0 < i ≤ H). These numerical values satisfy the

quantity theory in the long run. Now use (20) to calculate p limβ̂ for various values

of K and ρ. The results from this exercise are shown in Table 4. We label these

contrived estimates p limβ̂′K,ρ.

The cells of Table 4 show what happens to p limβ̂′ (using the contrived value

for βi = β̄) when the averaging horizon is K years long and serial correlation of xt

is ρ. It is clear from Table 4 that, even though we set up the example so that the

long-run elasticity of money to prices is 1.0, p limβ̂′ is far below 1.0 for any (K, ρ)

pair. It does, however, rise with both K and ρ.

Table 4: Calculated Prob Limits for β̂′

p limβ̂′K,ρ
ρ→
K↓ 0 0.1 0.25 0.5 0.75 .99

1 0.100 0.110 0.130 0.190 0.355 0.952

5 0.172 0.183 0.204 0.264 0.424 0.959

10 0.181 0.192 0.212 0.273 0.433 0.960

∞ 0.190 0.200 0.220 0.280 0.440 0.961

Calculated using equations (20) and (15).

Assumes H = 10 lags and β0 = 0.10 and βi = 0.09 = β̄, i=1,...,10.

Consider the two extreme values p limβ̂′∞,ρ and p limβ̂′1,ρ. These are the values

reported in the last and first rows of Table 4. When the true lag coefficients in (9)

are the same and equal to some value β̄, as in our example, we can show that the

difference of these probability limits is given by:

p limβ̂′∞,ρ − p limβ̂′1,ρ = β̄
(
1− ρH−1

)
' β̄ (21)

In our example, β̄ = .09. This is very close to the difference between the values in

the last and first row in Table 4.

Equation (21) is derived using Properties 3 and 5 of the C (K, ρ) function intro-

duced in Section 6.1. For the annual case, since C (1, ρ) = ρ, we apply (20) to see
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that:

p limβ̂′1,ρ = β0 + ρβ1 + ρ2β2 + ρ3β3 + ...+ ρHβH (22)

On the other hand, the limK→∞C (K, ρ) = 1, so that:

p limβ̂′∞,ρ = β0 + β1 + ρβ2 + ρ2β3 + ...+ ρH−1βH (23)

If we set βi = β̄ (for i > 0) and subtract (22) from (23), we can simplify to get

(21).10

The result in (21) puts bounds on what we can reasonably expect from time

averaging of the data. At the most, time averaging can be expected to raise the

estimated coefficient in (5) by the amount β̄, which we may think of in general as

an approximation to the mean of the true coefficients in (9) at lag 1 and beyond.

In our simple example, it is exactly that mean. If H = 3 or H = 4, β̄ will be larger

than the value of .09 that we have assumed in our example with H = 10.

To sum up, our empirical results are generally consistent with a model in which

the true inflation generating process is a distributed lag in money growth. In par-

ticular, it can explain why time averaging can move the estimated coefficient β into

the confidence interval containing 1.0 for HMG countries because of their short lag

structure, but not for LMG countries that are likely to have a longer lag structure.

The key insight is contained in (21). For HMG countries, using time-averaged data

allows the researcher to recover almost all of the influence of past money growth

that is missing when only annual data is used. Why? Because there is only one lag

to account for, so β̄ captures it all. This is not so with LMG countries: β̄ captures

only a fraction 1
H of the influence of past money growth.

10When ρ = 0, C(K, ρ) = 1− 1
K

and as K →∞, C(K, ρ)→ 1. Therefore (21) still holds.
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7 Second Explanation: Negative Correlation

We have so far maintained the assumption that money growth shocks are random

and independent of those to inflation. This may be true in HMG countries, but is

not likely to characterize LMG countries. Here, we allow for negative correlation

between shocks to money growth and inflation. For tractability, we return to the

assumption that money growth affects inflation only contemporaneously so the true

model is (3) and β0 is the long-run elasticity. We continue to assume positive

autocorrelation in x as in (11). Negative correlation between shocks to inflation and

money growth, εt and ωt, could arise in a few contexts: inflation targeting, financial

or other innovations; or measurement error.11 A policy of inflation targeting in

which shocks to inflation are offset by countervailing shocks to money growth will

induce such negative correlation. It is also possible that financial and technological

innovations – which are more likely to occur in LMG countries which tend to be

more developed – induce negative correlation between shocks to money growth and

inflation. Thus, in this section, we now assume that σεω = σxε < 0 in LMG countries.

When there is negative correlation between the errors, there is also negative

correlation between the averages X and Λ, σXΛ < 0 . The negative correlation will

be complicated by the fact that each x in X is autocorrelated. In this case, if we

estimate (5), we have:

plimβ̂ = β0 +
σXΛ

σ2
X

< β0 (24)

The expected estimate is smaller than the true long-run elasticity β0, which is equal

to 1.0 if the quantity theory is correct.

We have found the expression for σ2
X already. In Appendix A.3 we derive an

expression for σXΛ and show that the ratio is given by:

σXΛ

σ2
X

=
σxε
σ2
x

G (K, ρ) < 0 (25)

11We find support in the data for this assumption. We calculated values for σεω using OLS
residuals from (3) and (11) for all 99 countries. For the LMG group, 64 percent were negative and
the average σεω was -0.08. For the HMG group, in contrast, only 36 percent were negative and the
average was 0.20.
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where:

G (K, ρ) ≡
(
K +M (K, ρ)

K + 2M (K, ρ)

)
(26)

and the M (K, ρ) function is given by (16). Combine (24) and (25) to get:

plimβ̂ = β0 +
σxε
σ2
x

G (K, ρ) < β0 (27)

We call G(K, ρ) the asymptotic bias proportion function: it is the proportion of

the asymptotic bias in annual data that remains when estimating using data that is

averaged over K years. As we will see, the benefit of estimating (5) with K-averaged

data is that plimβ̂ gets closer to the true β0 as K rises.

Figure 6 plots G (K, ρ) in (26) as a function of K, for two values of ρ, ρ = .50

(solid circles) and ρ = .25 (hollow circles). We can show that:

1. 1
1+ρ < G (K, ρ) ≤ 1

2. GK < 0 and Gρ < 0

3. G (K, 0) = G (1, ρ) = 1

4. limK→∞G (K, ρ) = 1
1+ρ

For the purpose of explaining our results, the key property of (26) is that GK < 0,

so that plimβ̂ gets closer to the true β0 as K rises. That is, the asymptotic bias

can be reduced by increasing the time averaging horizon. This effect, however, is

limited, as we see from properties 1 and 4. Even in the limit as K → ∞, G (K, ρ)

can go no lower than 1
1+ρ .

This explanation can also account for our pattern of estimated coefficients in

Table 2 for the LMG countries. Take a simple example. If β0 = 1 and we take

our point estimate of β̂ = 0.13 for the LMG countries at annual frequency in Table

2 as the value of plimβ̂, then we can use (27) to find an estimate for the ratio:

σxε
σ2
x

= −.87. We can find this easily because the frequency of the data is annual

and G (1, ρ) = 1. Now use (27) at decade frequency. Table 2 tells us the estimated

coefficient is 0.40. As before, identify 0.40 with the probability limit then, using
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Figure 6: bias proportion and K

numerical methods, take (27) with K = 10 and σxε
σ2
x

= −0.87 to find ρ = 0.51. This

may be a reasonable value for the serial correlation in money growth. We do not

wish to push the calibration exercise too far, but only to show that this explanation

may be consistent with our results for LMG countries.

Our explanation for the difference in results for HMG countries and LMG coun-

tries in this case is based on the difference in σxe, the negative correlation between

inflation and money growth. It is reasonable to assert that LMG countries are more

likely to fit this proposed structure. HMG countries are not likely to have nega-

tive feedback from inflation to money growth – if anything, that feedback could be

positive – so averaging would not yield an estimate of β closer to its true value.12

8 Conclusion

It is commonplace to say that money affects the price level proportionally. It can be

difficult, however, to find proportionality with data averaged over any time interval

when money growth is on average less than 15 percent per year - a result we corrob-

orate using a panel of 99 countries with data sampled at the annual, half-decade,

decade, and cross-section frequency. We have offered two explanations for why this

might be the case, even if the true long-run elasticity of money with respect to prices

is unity.

12Where a positive simultaneity bias exists, the bias will be upward but will still be mitigated
when data are averaged at increasing levels of time aggregation, provided the regressor has positive
serial correlation.
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One explanation relies on a distributed lag of money growth in the true process

that generates inflation. In this model, the true long-run elasticity is the sum of the

coefficients on money growth, both contemporaneous and lagged. We were able to

show that the greater the number of lags in the true model, the greater the difference

between the true long-run elasticity – which in the quantity theory is 1.0 – and the

expected coefficient from a regression of time-averaged inflation on time-averaged

money growth. It is a short step from there to reason that countries with more lags

in the true generating equation will therefore do worse in approximating the true

long-run elasticity using time-averaged data. This story is compatible with results

for our low-money-growth countries. On the other hand, when there is a short pass-

through of money growth to inflation, using time-averaged data is more likely to

capture the underlying true model. This story is consistent with our results for the

high-money-growth countries.

Our second explanation relies on the existence of negative correlation between

shocks to inflation and shocks to money growth. The negative correlation creates

downward bias in the estimate of the coefficient relating money growth to inflation.

Using time-averaged data moves the probability limit of the coefficient estimate

closer to its true value – if money growth is positively serially correlated – but at

most by a half. If negative correlation is strongest in low-money-growth countries –

perhaps because the monetary authority is more likely to target inflation or offset

money demand shocks – then these countries will have lower coefficient estimates

when using averaged data compared to high-money-growth countries. However, a

greater degree of averaging of the data mitigates the downward bias and moves the

estimated relationship closer to the true relationship. This explanation provides an

alternative interpretation to the empirical results for the low-money-growth coun-

tries.

A common approach to testing hypotheses about the long-run elasticity of money

with respect to prices is to estimate a model of inflation regressed on money growth

using data that are time-averaged. However, these results are likely to be misleading

because using time-averaged data produces a coefficient that is below the true long-
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run elasticity for either of the two reasons described above. For high-money-growth

countries where inflation is likely to be generated by a short lag in money growth,

the discrepancy between the estimated relationship and the true relationship – in

the limit of averaging – is nil. Alternatively, because high-money-growth countries

are not likely to demonstrate negative feedback from inflation to money growth,

they avoid the influence of negative bias, for any degree of time-averaging. For low-

money-growth countries, however, we demonstrated that using time averaged data

to estimate the money growth-inflation relationship will mitigate any downward

bias.

Given potentially different explanations for the low money growth country re-

sults, it is difficult to know whether differences in the estimated money growth-

inflation relationship between high- and low-money-growth countries arise because

long averaging is not able to capture – in a statistical sense – the full impact of

money growth on inflation, or because low-money-growth countries are fundamen-

tally different from countries with high money growth.
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A Variance and Covariance Expressions

A.1 The Variance of X

Here we derive the variance of XK in (4), which is the denominator of (15).
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In general, for a linear combination of random variables W = a1x1+a2x2...aKxK ,

and in which the x variables are correlated, the formula for the variance of W is:

V ar (W ) =
K∑
i=1

a2
iV ar (xi) +

K∑
i>j

2aiajCov (xi, xj) (28)

The first term accounts for each of the K contemporaneous elements xi and the

second for any covariance that may exist between xi and xj . Now let W = XK,t ≡ X

as defined by (4) in the text.

For X, it is useful to construct a matrix like that in Table 5, which applies to

the case of K = 5. The first row and column list each term of X in (4), where

a ≡ 1
K . The expressions in each inner cell are the covariances between the terms.

The variance of X is simply the sum of the contents of these inner cells. Thus, the

first term in (28) corresponds to the sum of the elements along the main diagonal.

Since there are K identical terms, and using the definition of a, we may write it as:

K

(
1

K2

)
σ2
x

Since xt is an AR(1) series, the covariance between any two distinct terms of Z can

be written:

Cov (xt, xt−i) = Cov (xt−i, xt) = ρiσ2
x

where i is the time distance between terms. This means that the matrix is symmetric,

so we only have to add the terms above the main diagonal, and then double that

value. Each term has the value a2σ2
x =

(
1
K2

)
σ2
x in common. They only differ in

the power of ρ and the number of identical terms associated with each power. The

pattern is easily seen in Table 5: the number of terms in ρi is K − i where i is the

distance backward from t. Thus, the second term in (28) can be written as:

2

(
1

K2

)
σ2
x

K−1∑
i=1

ρi (K − i) (29)
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Table 5: Variance Terms of Z: K = 5
axt axt−1 axt−2 axt−3 axt−4

axt a2σ2
x a2ρσ2

x a2ρ2σ2
x a2ρ3σ2

x a2ρ4σ2
x

axt−1 a2ρσ2
x a2σ2

x a2ρσ2
x a2ρ2σ2

x a2ρ3σ2
x

axt−2 a2ρ2σ2
x a2ρσ2

x a2σ2
x a2ρσ2

x a2ρ2σ2
x

axt−3 a2ρ3σ2
x a2ρ2σ2

x a2ρσ2
x a2σ2

x a2ρσ2
x

axt−4 a2ρ4σ2
x a2ρ3σ2

x a2ρ2σ2
x a2ρσ2

x a2σ2
x

The expression for the variance of X is then:

σ2
X =

σ2
x

K2

(
K + 2

K−1∑
i=1

ρi (K − i)
)

=
σ2
x

K2
(K + 2M (K, ρ)) (30)

where M (K, ρ) ≡
∑K−1
i=1 ρi (K − i) and is expressed in closed form in (16) in the

text.

Notice, too, that since xt is the AR(1) process shown in (11), we can express its

variance by:

σ2
x =

σ2
ω

1− ρ2
(31)

In the text, we use σ2
x, but we can express this variance in terms of the underlying

variance of the error ωt, as well as the value of ρ.

Finally, if ρ = 0, then we see from Table 5 that the variance of X is only the

first term in (30) : σ2
X = σ2

x
K .

A.2 The Covariance of X and X−1

We proceed as above, first forming a 5 × 5 helper matrix (K = 5) whose elements

are the covariances of individual terms. The first column of Table 6 is a list of the

terms of X5,t while the first row contains the elements in X5,t−1. The covariance we

seek is the sum of all the entries in the inner cells.

We note that each term has the common factor a2σ2
x = σ2

x
K2 . Ignoring this factor

for now, along the main diagonal we have K terms of ρ. Along other diagonals, the

pattern emerges: there are K − i terms in both ρi+1 and ρi−1 . This allows us to

30



Table 6: Covariance Terms of X and X−1: K = 5
axt−1 axt−2 axt−3 axt−4 axt−5

axt a2ρσ2
x a2ρ2σ2

x a2ρ3σ2
x a2ρ4σ2

x a2ρ5σ2
x

axt−1 a2σ2
x a2ρσ2

x a2ρ2σ2
x a2ρ3σ2

x a2ρ4σ2
x

axt−2 a2ρσ2
x a2σ2

x a2ρσ2
x a2ρ2σ2

x a2ρ3σ2
x

axt−3 a2ρ2σ2
x a2ρσ2

x a2σ2
x a2ρσ2

x a2ρ2σ2
x

axt−4 a2ρ3σ2
x a2ρ2σ2

x a2ρσ2
x a2σ2

x a2ρσ2
x

Table 7: Covariance Terms of X and Λ: K = 5
aεt aεt−1 aεt−2 aεt−3 aεt−4

axt a2σxε a2ρσxε a2ρ2σxε a2ρ3σxε a2ρ4σxε
axt−1 0 a2σxε a2ρσxε a2ρ2σxε a2ρ3σxε
axt−2 0 0 a2σxε a2ρσxε a2ρ2σxε
axt−3 0 0 0 a2σxε a2ρσxε
axt−4 0 0 0 0 a2σxε

write the covariance as the sum of all the cells as follows:

σXX−1 =
σ2
x

K2

(
ρK +

(
ρ+

1

ρ

)K−1∑
i=1

ρi (K − i)
)

=
σ2
x

K2

(
ρK +

(
ρ+

1

ρ

)
M (K, ρ)

)
(32)

where M (K, ρ) ≡
∑K−1
i=1 ρi (K − i) and is given in the text in closed form in (16).

The ratio of (32) to (30) is the central function C (K, ρ) given by Equation (15)

in the text.

From the table, we see that if ρ = 0, then σXX−1 = σ2
x

K2 (K − 1). If we take the

ratio of this expression to the corresponding expression σ2
X = σ2

x
K found above for

ρ = 0, we get C (K, 0) = K−1
K = 1− 1

K .

A.3 The Covariance of X and Λ

Now consider σXΛ, the covariance of the averaged terms X and Λ . Again, it is

useful to appeal to a helper matrix like that in Table 7. The covariance we are

looking for is the sum of all of the terms in the matrix. Each entry is given by the

following:

1. Cov (xt−i, εt−i) = σxε for i ≥ 0
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2. Cov (xt−i, εt) = 0 for i > 0

3. Cov (xt+i, εt) = ρiσxε for i > 0

We know, for example, that Cov (xt−i, εt) = 0 because εt only affects xt and later

realizations of x. On the other hand, Cov (xt+1, εt) = ρσxε < 0 because εt affects

xt, which then affects xt+1 with magnitude ρ. For terms two years apart, we have

Cov (xt+2, εt) = ρ2σxε < 0.

Summing the terms yields:

σXΛ =
σxε
K2

(
K +

K−1∑
i=1

ρi (K − i)
)

=
σxε
K2

(K +M (K, ρ)) < 0

where M (K, ρ) is given in closed form in (16).

From the table, we see that if ρ = 0, then σXΛ = σxε
K2K = σxε

K . So taking the

ratio with σ2
X = σ2

x
K in the case of ρ = 0, yields σxε

σ2
x

.
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