
Economic Growth and

Development:

The Growth Book

John McDermott

January 12, 2018



Contents

1 Growth: Issues 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Sources of Economic Growth . . . . . . . . . . . . . . . . 7

1.3 Factors That Contribute to the Basic Processes . . . . . . . . 8

1.3.1 Population and Scale . . . . . . . . . . . . . . . . . . . 8

1.3.2 Openness and Geography . . . . . . . . . . . . . . . . 9

1.3.3 Government . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 International Comparison 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The Exchange Rate . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 A Basic Measure: The Big Mac Factor . . . . . . . . . . . . . 14

2.4 The International Comparison Project . . . . . . . . . . . . . 18

2.5 Comparing Across Time As Well as Space . . . . . . . . . . . 21

2.6 Other Data: World Bank and Maddison . . . . . . . . . . . . 26

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Appendix A: The Dollar-Based PPP-ER . . . . . . . . . . . . 27

2.9 Appendix B: The Method of Parente and Prescott . . . . . . 31

3 Principal Eras of Economic History 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Eras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Hunting and Gathering . . . . . . . . . . . . . . . . . 33

1



CONTENTS 2

3.2.2 Neolithic Agriculture . . . . . . . . . . . . . . . . . . . 34

3.2.3 River Empires . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Classical . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.5 Dark Ages . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.6 Revival . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.7 Black Death . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.8 Renaissance and Enlightenment . . . . . . . . . . . . . 35

3.2.9 Industrial Revolution and Expansion . . . . . . . . . . 36

3.2.10 Scientific Revolution and Modern Growth . . . . . . . 36

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Rates of Growth 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Growth Rates: Discrete and Continuous . . . . . . . . . . . . 38

4.3 Exponential Growth Rates in Practice . . . . . . . . . . . . . 42

4.4 Natural Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 The Population of Europe . . . . . . . . . . . . . . . . . . . . 45

4.6 Negative Exponential Growth . . . . . . . . . . . . . . . . . . 46

4.7 Instantaneous Growth Rates . . . . . . . . . . . . . . . . . . . 48

4.8 Related Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8.1 Present Value . . . . . . . . . . . . . . . . . . . . . . . 50

4.8.2 Annuity . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Neoclassical 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Equations of Change . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Growth Equation for k . . . . . . . . . . . . . . . . . . . . . . 56

5.5 The Steady State . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 The Growth Rate of k . . . . . . . . . . . . . . . . . . . . . . 59

5.7 Continuous Technical Change . . . . . . . . . . . . . . . . . . 60

5.8 Endogenous Growth: A Simple Alternative Model . . . . . . 61



CONTENTS 3

5.9 Growth Accounting . . . . . . . . . . . . . . . . . . . . . . . . 62

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Regression Analysis 66

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 The Basic Theory Illustrated with Simple Data . . . . . . . . 66

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Source of Technology 72

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Basic Issues and Terminology . . . . . . . . . . . . . . . . . . 73

7.2.1 Rivalry vs Non-rivalry . . . . . . . . . . . . . . . . . . 73

7.2.2 Excludability . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.3 Technology by Accident: Externalities, Spillovers, and

Learning by Doing . . . . . . . . . . . . . . . . . . . . 75

7.2.4 Collective Choice and Public Goods . . . . . . . . . . 76

7.2.5 Institutions and Technology . . . . . . . . . . . . . . . 77

7.3 Technology and Evolution . . . . . . . . . . . . . . . . . . . . 78

7.4 Historical Approaches to Technical Progress . . . . . . . . . . 78

7.4.1 Types of Innovation . . . . . . . . . . . . . . . . . . . 78

7.4.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4.3 Direction of Innovation: Labor or Capital? . . . . . . 79

7.4.4 Diffusion of Innovation . . . . . . . . . . . . . . . . . . 79

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 Perpetual Growth and Finite Resources 80

8.1 Extraction and Growth . . . . . . . . . . . . . . . . . . . . . 80

8.2 Optimal λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 Wages Across Countries 86

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2 Comparing Separate Economies . . . . . . . . . . . . . . . . . 86

9.2.1 Production and Relative Per Capita Income . . . . . . 87

9.2.2 Return to Capital . . . . . . . . . . . . . . . . . . . . 87



CONTENTS 4

9.2.3 Return to Labor . . . . . . . . . . . . . . . . . . . . . 88

9.2.4 Examples and Cases . . . . . . . . . . . . . . . . . . . 90

9.2.4.1 Case 1: A = 1 and h=1 in Both Countries . 90

9.2.4.2 Case 2: More Human Capital in the Indus-

trial Country . . . . . . . . . . . . . . . . . . 91

9.2.4.3 Case 3: A and h Greater in the Industrial

Country . . . . . . . . . . . . . . . . . . . . . 93

9.3 Globalization: Capital Mobility and Wages . . . . . . . . . . 94

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10 Guidelines for the Empirical Project 97

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.2 The Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.3 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.5 Excel and R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



Chapter 1

Growth and Development:

The Principal Issues

1.1 Introduction

The Industrial Revolution ushered in an era of wide disparity of real per

capita income across nations. This disparity is illustrated in Figure 1.1,

which shows the progress of countries over the last 400 years. Although the

data is quite imprecise before 1850, this figure illustrates three important

points:

• The phenomenon of great differences in living standards is fairly recent

in history.

• The disparity today is staggering: the ratio of the best to the worst is

about 32.

• For these differences to have developed, there must have been a time

of tremendous growth differences.

The clear implication of Figure 1.1 is that the only way for a catch-up to

occur is for less-developed countries (LDC’s) today to grow considerably

faster than the industrial countries. While some progress is being made,

notably in Southeast Asia and Eastern Europe, many nations around the
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Figure 1.1: Output per Person in History

world show virtually no tendency to raise their growth rates above those of

the industrial West, and many more are stagnating, falling increasingly far

behind world leaders. There may be no more valuable exercise than trying to

understand why certain nations were able to raise their growth rates above

normal to achieve high real, per capita income, while others have not been

able to do so for centuries.

As a first step in the process of understanding, it is important to be

able to measure how well different countries are doing. We take up this

difficult task in Part 2 of the course (see Reading List), where we look at

methods to adjust GDP in different years and different countries to make

them comparable.
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1.2 The Sources of Economic Growth

Two processes lie at the heart of growth: accumulation and innovation.

Consider Figure 1.2, which shows the consumption stream of a primitive

fisherman. If she takes half a day off for a week to build a net – which

involves a current sacrifice of consumption — she will have the means to

consume more fish forever. Growth and development usually require the

sacrifice of current consumption and leisure to accumulate capital. People

can accumulate both physical capital and human capital (education or skill).

Both of these require a current sacrifice that will raise output permanently

later. In the early stages of thinking about growth and development, the

accumulation (or saving) process was thought to be of primary importance.

We look at basic accumulation in Parts 4 and 5.

The return to capital accumulation (or the productivity of capital) de-

pends on the state of knowledge or technology. The accumulation of a unit

of capital today yields far more output than investment in the last century

because of the vast rise in our knowledge. Innovation refers to the process by

which practical, technical knowledge increases. Although advances in basic

science are sometimes necessary for improvements in industrial technology,
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that is not always the case. In many historical periods (the Roman Empire

and China, for example) useful technology lagged far behind what was pos-

sible given the state of scientific knowledge. We begin looking at technology

in Parts 6 and 7, but it is an issue that comes up repeatedly in different

contexts.

Innovation may also take place via imitation. For many nations, it is far

easier to adapt existing technology rather than create new technology. This

is especially true where intellectual property rights are weak. One might

also consider specialization itself to be a type of innovation. It certainly is

the source of higher real income per person, and thus of growth.

1.3 Factors That Contribute to the Basic Processes

Countries are not all alike. Some of the differences involve physical resources

and some have to do with culture, both of which may be considered to be

exogenous; that is, given from the beginning and difficult to influence by

policy-makers. Many variables that we observe, however, can be changed by

the government, at least in the long run. This section looks at three broad

characteristics of nations that are often singled out as exerting an influence

on economic development. In each case, they influence the fundamental

processes noted above.

1.3.1 Population and Scale

For centuries, thinkers have been concerned about population’s effect on

economic growth. Before Malthus (around 1800), population was consid-

ered a positive force for growth. Now, in many circles the reverse is true:

population is thought of as an impediment to growth.

There are essentially two reasons that a large population can raise liv-

ing standards and growth rates: scale economies and idea generation. We

consider these ideas beginning in Part 3 and continuing in Part 10.

Economies of scale — meaning a rise in per capita output as people

increase in number —arise from the division of labor that accompanies the
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specialization mentioned above. When people concentrate on one task, they

get better at it and save time since they need not keep switching between

tasks. According to Adam Smith: “The division of labor is limited by the

extent of the market.” The market can be extended in two ways: by the

natural growth of population and by the reduction of transport costs. It

is not clear if we want to think of specialization gains as involving new

technologies, or simply utilizing existing ones better. In either case, a larger

population will make everyone better off through specialization.

Ideas come from people, perhaps interacting with others. The second

way that greater numbers raise per capita income is through their ability to

create more and better ideas for production and distribution. In this view,

both kinds of technology are thought to increase faster when population is

greater, simply because ideas come from people, so the more there are, the

greater the chance of finding a new invention.

The above processes work in the long term. In the short run, however,

it is possible that an increase in population would reduce per capita income.

The reason is that all other factors, like land and machinery, are fixed in the

short run so that more workers are likely to encounter diminishing marginal

productivity of their effort. Think about putting more and more laborers to

work on a farm of fixed acreage: although output will rise at first, sooner or

later the productivity of new workers would be become so low that produc-

tion per person would fall. Today, this appears to be a significant problem

in traditional societies in Sub-Saharan Africa and parts of south Asia.

1.3.2 Openness and Geography

Some countries are very open to the outside world in terms of trade in goods

and the exchange of ideas. Others, like Cuba and North Korea, are almost

totally closed to imports of commodities and technologies. The static gains

from trade are well-known; nations that refuse to trade can be expected to

have lower levels of per capita income compared to comparable countries

that are open, since they do not allow themselves to take advantage of the

benefits of international specialization and economies of scale.
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The effect of openness on growth and development is more controversial.

Indeed, many policies that serve to restrict commerce are justified by appeal

to their effects in enhancing industrialization and development. The idea,

which was very popular in the period directly following WWII, is that indus-

try is valuable because it creates positive external effects on the rest of the

economy. So even if the industry makes losses, its benefit to society may be

so great that the enterprise is worthwhile, and worthy of a subsidy. External

effects, both positive and negative, are very difficult to measure, however, so

it was never clear which industries, if any, should be protected. Indeed, one

could argue that the opposite policy was better: the country should remain

open to new ideas and goods to generate faster growth through technology

transfer and human capital development. Globalization is the latest form

of the debate about openness. There are several fascinating aspects to this

debate, one of which we discuss in Part 8.

Apart from openness, there is the question of geography. Do the physical

and spatial characteristics of a country make a difference for development?

Currently, there has been a renewal of the interesting debate concerning the

tropics. No industrial country is located within the tropics. Is this because

of the climate and geographical features of these countries, or does it stem

from the colonial heritage? We look into these issues in Part 13.

1.3.3 Government

One of the most controversial areas of development economics concerns the

role of the government and politics in general. Is the government a positive

force for growth, performing collective functions that would not be per-

formed by the market? Or is it a negative force, one that interferes in the

growth process by imposing inefficient redistributive policies on the market?

The early literature focused on the government’s ability to plan and

mobilize large-scale resources for development. Moreover, it is reasonable

to suppose that a government is necessary for the provision of several key

public goods, like education, public health, and transportation.

Focusing on a large, involved government led to the policy of restricting
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imports to encourage industry, as noted above. People conceived of the

government as a powerful, yet benevolent, force acting to counter the ill

effects of a market system that did not function to maximize general welfare.

More recently, however, the literature has concentrated on the failures of the

government to carry out such a role. Government corruption, incomplete

property rights, exploitation, and political decision-making can all hamper

growth. The government’s proper role may small: to enforce property rights

and contracts, and provide essential public services so all can realize their

full potential.

When looked at in this way, development is seen to depend crucially on

the nation’s institutions. If the proper institutional environment is in place,

development will proceed almost automatically. Part 9 deals with these

issues.

In Part 12 we discuss the particular problem of sustainability and

growth.

1.4 Conclusion

Economic development depends on the interplay of population, technology,

and institutions. Not only do these exert a powerful influence on growth

and structural change, they are interrelated in complex ways. Coming to a

basic understanding of these relationships and their effect on growth is the

main purpose of this course. Policy for development can only succeed to the

extent that it is based on sound fundamental theory informed by history.



Chapter 2

International Comparison of

Income across Time and

Space

2.1 Introduction

How do we know if a country is better off than others? More precisely, how

do we measure how much better one country is than another? If we are to

propose useful theories of growth, it is necessary that we also have means

of validating those theories. We can only do that if we can measure relative

performance in both dimensions: across time and across space.

The problem is difficult because the people of different nations consume

different items and use different currencies. In this chapter, we show how

adjustments to the data are made to improve the comparison. It should

always be kept in mind that these adjustments are imprecise and that we

cannot find exact measures of national product that are comparable between

countries and between time periods.

12
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2.2 The Exchange Rate

We begin by assuming that we know the nominal GDP of a country; that

is, the total value of final output, expressed in the home currency. If there

are m different goods:

Y = p1q1 + p2q2 + p3q3 + ... =
m∑
i=1

piqi = p′iqi (2.1)

where the bolded symbols are vectors of prices and quantities.1 For every

country, j = 1, , 2, . . . n, we have such a measure. It will be in yen, euros,

dollars, pounds, etc. We assume that each of the n countries has m different

goods.

The measures in (2.1) are in different currencies so we must express them

all in terms of a common currency in order to compare them. Perhaps the

most obvious thing to do is to use the US dollar exchange rate to express

all of them in terms of US money:

Ỹj =
Yj
Ej

(2.2)

Here, Ej is the exchange rate in, for example, € /$ or £/$; that is, Ej is the

j-currency price of one US dollar, so that Ỹj is a measure of Nominal GDP

in terms of dollars. Think about the price of pizza in England: 18.95 £
Pizza .

It is a ratio, too. The price of a dollar in the UK is analogous.

This measure is not satisfactory because the exchange rate is not a good

measure of comparable goods value. What I mean by this is that if you took

$100 you could buy a lot more in India (after conversion to Rupees at the

current exchange rate) than you could in the US. But in Switzerland you

would not be able to get nearly as much as in the US. Exchange rates do

not do a very good job in making currencies equal in terms of the goods they

will purchase. Yet, to compare living standards between different nations,

that is precisely what we need: a conversion factor based on goods.

1In this expression, p′ is a row vector , while q is a column vector.
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2.3 A Basic Measure: The Big Mac Factor

Because of these problems, we want to invent a new “exchange rate”, a

synthetic one, that we can use to convert one country’s GDP into units that

make it directly comparable to another’s GDP. One very simple way to do

this is to assert that one good, a Big Mac, for example, “should” cost the

same in every country, since it is a fairly standard product. If so, then the

ratio of the two hamburger prices implicitly defines an “exchange rate”. In

the case of the United States and Great Britain we have:

FM =
p£Mac

p$
Mac

(2.3)

A good way to think of FM is as follows: if the market exchange rate E

were equal to FM , then a Big Mac would cost the same in the US and the

UK (that is, it would take the same number of dollars to buy a Big Mac,

whether you did so in the US, or bought £’s first then bought a Big Mac in

London). A recent search of the web came up with the following data for

Big Mac prices in the UK and the US: p£Mac = £2.99 and p$
Mac = $5.33.

This means that F = 0.5610£
$ .

Note that FM has the dimension £/$, just like E, and is, in some sense,

an ideal exchange rate. Since the Big Mac can be found in virtually every

country on earth (an exaggeration) we could use FM in place of E in (2.2)

and get a better measure of dollar GDP for each country. These can then be

compared across countries. In fact, The Economist magazine began doing

this decades ago.

The technical term for a factor like FM is a “Purchasing-Power-Parity

Exchange Rate” or PPP-ER for short. For FM to be a “perfect” factor

requires that the prices of all goods in the country stand in the same relation

to their US counterpart goods as do Big Macs. That is, if FM were a perfect

measure, if you took the ratio of any two items (bicycles, for example) you

would get the same number shown in (2.3). This, of course, would never

happen, if for no other reason than people’s preferences vary widely over the

globe, and transportation costs are significant and different.
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The actual exchange rate in early 2018 was E = 0.73692£
$ , which is more

than the FM found above. In this case, we say that the dollar was overvalued

and the pound was undervalued. That is, since E is the price (value) of the

dollar, when E > FM it means that the dollar’s market (actual) value is

greater than its “ideal” value. Hence, the market overvalues the dollar (and

undervalues the pound).

The Big Mac rate FM is way too simple a substitute for E. Yet it works,

and conveys the objective of the whole comparison project in a relatively

simple way: we are looking for factors with which we can convert a country’s

GDP in order to make it directly comparable to that of all other countries.

Look at the row for the year 2000 in Table 2.1. Each entry shows yj2000,

defined to be Country j’s GDP in the year 2000 expressed in “purchasing-

power” US dollars of 2000. Each entry is constructed as follows:

yj2000 =
Yj2000

FMj2000

(2.4)

where j refers to the country and 2000 refers to the year. In the row for the

year 2000, there are three entries, one for the US, one for Argentina, and

one for any country j. In the complete table, of course, there would be 190

columns, one for each country.

These entries are GDP of each country, expressed in“US dollars of 2000”.

That is, by dividing the value of each nation’s GDP in 2000 – expressed in

its own currency – by its particular FMj in (2.3) converts its GDP to its

value in terms of US dollars of 2000. If we put actual numbers in for the

expressions, we could compare each cell to see just how much one nation’s

living standard exceeded that of another in 2000.

Now we consider the additional complexity of comparing across time.

Consider only the USA, shown in the first column of Table 2.1. How can

we compare GDP of 1950 to that of 2000 or 2018, given that prices have

increased over time, so the dollar was worth less in the later years compared

to the earlier years? The easiest way to proceed is to form the following

“exchange rate” between “dollars of Year t” and “dollars of 2000” In the

example below, the year 2000 will be considered the base year, so to find
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Table 2.1: Comparing Output per Capita

Country

Year USA Argentina Country j

1950 yUS50 = YUS50
Π50

yAr50 = YAr50
θAr50

yj50 =
Yj50
θj50

...

2000 yUS00 = YUS00 yAr00 = YAr00
FMAr00

yj00 =
Yj00
FMj00

. . .

Year t yjt =
Yjt
θjt

...

2018 yUS18 = YUS18
Π18

yUS18 = YUS18
θ18

out how much the price of a Big Mac has changed between 1950 and 2000

we form the following ratio:

Π1950 =
p$1950
Mac

p$2000
Mac

=
.63 $1950

3.81 $2000
= .165

$1950

$2000
(2.5)

The ratio in (2.5) is the ”price” of a 2000-dollar in units of a 1950-dollar

(the actual prices are made up, but the ratio reflects the US price inflation).

This is an unusual concept; we are not used to thinking of exchange rates

for the same money across time! The way to think of it is this: it would

take only .165 dollars in 1950 (that is, 16.5¢) to buy the same goods that 1

dollar bought in 2000. A dollar went a lot farther back then. Another way

of saying this is that we have had inflation of
(

1
Π − 1

)
∗ 100 = 505 percent

in those 50 years!

It might be useful to assume that money changed color whenever it

changed value! That is, if money were green in 1950, it might be red in

1980 and blue in 2000. Then we could talk about the price of a red dollar

in terms of blue dollars. Or vice versa.

To adjust GDP in 1950, we divide it by Π50 = .165 to make it comparable
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to GDP of 2000. To take a later year, say, 2005, if Π2005 = 1.12 then we

would scale back GDP in 2005 to 1/1.12 of its recorded value to make it

comparable to that of 2000. In Column 1 of Table 2.1 we multiply the US

current GDP by the appropriate Πt to get yUSt, the value of US output in

year t, expressed in dollars of 2000.

For this method to be useful, we must assume that prices in general in

the US have increased about as much as the price of a Big Mac over that

50 year span. That may be fairly accurate (although durable goods prices

have risen much less than food, and some have fallen). In any case, we have

now achieved comparability between all of the entries for Column 1 and Row

2000.

Now, we want to find all of the yjt: the value of per capita GDP in

Country j in Year t expressed in US dollars of 2000. That is, we want to

complete Table 2.1.

To do so, we take the national GDP per capita in Year t, divide it by

FMjt of that year for that country, then divide it by the appropriate Πt .

Take Brazil in 1972, for example. First find the value of Brazil’s per capita

output in 1972 in terms of Cruzeiros of 1972 – then divide it by FMBr1972 to

get it in terms of US$ of 1972; finally, divide it by Π1972 to get it in terms

of US$ of 2000.

To make Table 2.1 less cluttered, define the following factor:

θjt = FMjt Πt (2.6)

where j stands for the country and t stands for the year. Then, we have:

yjt =
Yjt
θjt

(2.7)

The entries of Table 2.1 shows how to convert the GDP of any country

in any year to make it comparable to US GDP in 2000.
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2.4 The International Comparison Project

The International Comparison Project (ICP) of the United Nations is the

leading group working on finding the best possible measures of comparable

GDP. Basically what they do is go to each country and collect price data on

a few hundred different items, divided into 3 main categories, Consumption,

Investment, and Government. The ultimate goal is to find the best average

price ratios to serve as an alternative to the Big Mac FM .

In the process of finding the preferred measure, the Project generates

several different, useful variables. Appendix A shows how they find the

PPP-ER based on the US dollar, by using the price of an “average” good in

each country in place of the Big Mac. Let us call this hypothetical rate F .

It can be described as follows:

Fjt =
Price of AveGood inCountry j in Y ear t

Price of Ave.Good inUS inY ear t
(2.8)

All constructed PPP-ER’s are trying to measure the ratio displayed in (2.8).

It is just like the Big Mac rate, except we have substituted“the average good”

for a Big Mac.

This PPP-ER measure, although more sophisticated than our earlier

measure based on Big Macs, does exactly what the simple one did: it mea-

sures “the currency-j price of 1 dollar” in the sense of defining the “ideal”

currency value (or exchange rate) that would allow you to buy the same

amount of goods in Country j and the US given that you had, say, $100.

Now in Table 2.1, wherever there is an FM , just substitute F , and you

have a very good measure of comparable GDP values. For Πt we would use

a measure of average prices in the US across the different time periods (not

just the Big Mac price in the US across time). And we would adjust θ to be

θjt = FjtΠt.

In constructing the Fjt’s, they also produce PPP-ER measures for each

of the items and categories (Consumption, Investment, Government expen-

diture) separately. Sometimes these are very useful since different theories

of growth predict differences in prices between sectors.
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One of the most important sources of inter-country data based on the

ICP is the Summers-Heston-Aten Penn World Table (PWT) data

set,2 which we discuss throughout this class. There are five different mea-

sures of national GDP measured in US dollars. We will be most concerned

with the measure of total domestic product based on expenditure:

CGDP ejt =
Yjt
Fjt

(2.9)

where Yjt, defined in Equation (2.2), is the national-currency value of GDP.

By dividing by Fjt, which is the PPP-ER in units of (curr j/$), we convert

it to US dollars. (See Appendix 2.8 for more on the construction of the

PPP-ER we call F ).

The construct CGDP e allows us to compare GDP across countries for

every year that they are made, but they do not allow us to compare across

different years. Because it is so difficult to gather data on prices around

the world, the ICP has constructed values of F for only seven years. These

are the so-called “Benchmark Years”: 1970, 1975, 1980, 1985, 1996, 2005,

and 2011. Through a complicated process, they interpolate and extrapolate

the F ’s, which allows them to find CGDP e for all years. In a similar way,

they construct a variable CGDP o, which treats imports and exports more

directly. The difference between them is this: CGDP e is useful for analyz-

ing the standard of living, while CGDP o is useful for analyzing productive

capacity and productivity. In neither case, however, can we use these to

compare across time. They are only comparable across countries in a given

year.

To shed more light on this issue, consider what it means for F
E < 1,

where F is the PPP-ER and E is the actual dollar-price of the currency.

Consider the case of Mexico, which uses pesos. Using (2.8), we can express

the condition as follows:

2This data, which is used in many research papers, is available free on the net at:
https://www.rug.nl/ggdc/productivity/pwt/

https://www.rug.nl/ggdc/productivity/pwt/
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F peso$

Epeso$

< 1

⇒ AveP inMexico

AveP inUS
< Epeso$ (2.10)

⇒ AveP inMexico < (AveP inUS) ∗ Epeso$

Thus, when F < E (so that F
E < 1) the price level in the home country

(Mexico) is below the US price level, when converted at the going exchange

rate. It is cheaper to live in Mexico than the US if you begin with dollars.

The other interpretation of F < E is that the home currency is under-

valued – since the dollar is overvalued: its market price exceeds its ideal

price.

The PWT data set is used in a great deal of the empirical research in

economic growth. It reports both the ratio noted above F
E and the nominal

exchange rate for each country. Interestingly, it calls F
E “the price level”.

The “Price Level” for Country j is therefore:

PLj =
Fj
Ej
× 100 (2.11)

The name “price level” is a bit misleading: given our discussion above, PL

is best thought of as the price level relative to the that of the United States.

Note that, by the definition in (2.11), PLUS = 100, since both the numerator

and the denominator are 1. Moreover, the price level for any country whose

Fj is the same as its Ej also has a price level of 100. In 1990 PLIndia was

only 26. The cost of living in India, by this measure, was 26 percent of its

level in the US. We can, equivalently, say that the rupee was undervalued

relative to the US dollar in 1990.

The PWT reports both PLj and Ej , so you can multiply the two to

find Fj . Again, what you end up with is a “true” measure of the (National

currency)/(US dollar) exchange rate.
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2.5 Comparing Across Time As Well as Space

Along with its own collected data, the ICP project uses National Account

Data from the various countries as reported by the United Nations and

World Bank to complete a matrix analogous to that shown in Table 2.1. As

noted earlier, there are five different series for GDP reported in the PWT 9.0

data set. We have discussed two already: CGDP e and CGDP o . The other

three are “real” series in that they are comparable across time. These are

called RGDP e, RGDP o, and RGDPNA. We could, for example, compare

(RGDP e/N)US1965 with (RGDP e/N)Mexico
1985 if we wanted to see how the US

living standard in 1965 compared with Mexico’s living standard in 1985.

(N is population.) We could do the same with the “o” and “NA” measures,

but they tell us slightly different things. From now on, we concentrate on

CGDP e and RGDP e.

To take a numerical example, consider the numbers in Table 2.2 taken

from the PWT v. 9.0, for which the base year is 2011. That means that in

2011, CGDP e = RGDP e. This table compares the progress of Ireland and

the United States from 1990 to 2014 (the last year for which we have data).

The entries are for per capita output.

In 2011, the base year, CGDP e = RGDP e for both Ireland and the US,

but the per capita value was higher for the US, as we would probably expect.

The column labeled “L” shows the ratio (CGDP e/N)Irlt / (CGDP e/N)USt .

This gives us the relative living standard in Ireland compared to the US

in Year t. Note the remarkable progress made by Ireland since 1990: the

standard of living rose from 49 percent of the US standard to 93 percent of

the US standard.

The column labeled “f” shows the ratio f =
(
RGDP et /RGDP

e
RefY

)US
.

This ratio shows the standard of living in the US in year t relative to a

“reference year”, which in this case is the base year of 2011 (but it could

be any year). Note that US living standards have increased by about 44

percent between 1990 and 2014, during which time f rose from .73 to 1.05.3

So, while the US has made solid progress, Ireland has done even better: if

3That is, 1.05/.73=.4386. The change is 1.05 - .73 = .32, which is 43.86 percent of .73.
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Table 2.2: Ireland and the United States

Measures of Comparable GDP Per Capita

Ireland United States Parente/Prescott PWT

Year CGDP e RGDP e CGDP e RGDP e L f Q = L× f Z

1990 18,087 18,006 36,620 36,398 0.49 0.73 0.36 0.36

1991 18,319 18,235 36,202 35,994 0.51 0.72 0.36 0.37

1992 18,865 18,767 37,165 36,955 0.51 0.74 0.38 0.38

1993 19,792 19,698 37,934 37,722 0.52 0.76 0.39 0.39

1994 20,935 20,956 38,939 38,977 0.54 0.78 0.42 0.42

1995 23,499 23,609 39,532 39,621 0.59 0.79 0.47 0.47

1996 25,114 25,392 40,559 40,775 0.62 0.82 0.51 0.51

1997 27,903 28,266 41,841 42,283 0.67 0.85 0.56 0.57

1998 30,968 31,519 43,150 43,902 0.72 0.88 0.63 0.63

1999 33,053 33,599 44,695 45,473 0.74 0.91 0.67 0.67

2000 35,838 36,245 46,078 46,740 0.78 0.94 0.73 0.73

2001 37,402 37,627 46,290 46,731 0.81 0.94 0.76 0.75

2002 39,529 39,590 46,809 47,116 0.84 0.94 0.80 0.79

2003 39,756 39,784 47,578 47,977 0.84 0.96 0.80 0.80

2004 40,823 40,824 48,943 49,398 0.83 0.99 0.83 0.82

2005 43,096 42,547 50,783 50,512 0.85 1.01 0.86 0.85

2006 46,016 45,728 51,255 51,374 0.90 1.03 0.92 0.92

2007 49,801 49,726 51,442 51,734 0.97 1.04 1.00 1.00

2008 45,998 45,736 50,482 50,439 0.91 1.01 0.92 0.92

2009 42,859 42,888 48,591 48,840 0.88 0.98 0.86 0.86

2010 43,511 43,569 49,431 49,596 0.88 0.99 0.87 0.87

2011 45,014 45,014 49,909 49,909 0.90 1.00 0.90 0.90

2012 45,725 45,874 50,657 50,752 0.90 1.02 0.92 0.92

2013 46,166 46,575 51,005 51,317 0.91 1.03 0.93 0.93

2014 48,283 48,767 51,983 52,292 0.93 1.05 0.97 0.98
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it had not, then its living standard still would be only 49 percent of that of

the US.

The PWT data also includes measures for the broad categories C, I,

G, as well as imports and exports, in the same way so that researchers can

compare, say, investment spending in Brazil in 1980 with that of France in

1990.

There are various ways to use the PWT data. It is most useful for

comparing the performance of different countries around the world. In Table

2.2 we compared Ireland and the US over time in a particular way, how

Ireland did relative to the US in any single year. Another way to proceed is

to examine the distribution of real output of all countries.

First, we look at the distribution of per capita output relative to the US

in the last year for which we have data, 2014:

Lj2014 =
(CGDP e/N)j2014

(CGDP e/N)US2014

(2.12)

This is shown in Figure 2.1. We expect that most of the Lj values would be

less than 1.0. This is borne out in Figure 2.1. There are only 10 countries

with CGDP e/N above that of the US (most are oil exporters like Brunei

and Norway, but Switzerland and Singapore are among them, too).

Now we look at the distribution of:

Qj2014 = Lj2014 × f1950 (2.13)

where f1950 is the measure of relative living standards in the US in 2014

relative to 1950. That is, f1950 is (RGDP e2014/RGDP
e
1950)US . The variable

Qjt = Ljtfry (where ry is the reference year) shows us how well Country j

is doing relative to the US in the reference year, which is 1950 in this case.

This distribution is shown in Figure 2.2. The interesting thing about this

graph is that in 2014 about half the countries in the world were worse off

than the United States in 1950.

Return to Table 2.2. The column labeled “Q = L∗f” shows Irish output

per capita in year t relative to the US base year of 2011. That is, the f here
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Figure 2.2: Per capita Output in 2014 Relative to US in 1950

is f2011. Ireland’s per capita GDP in 1990 was only 36 percent of that of

the US in 2011. By 2011, Ireland’s GDP per capita was 90 percent of that

of the US. The catch-up was remarkable.

Consider this ratio:

Zj2014 =
RGDP ej2014

RGDP eUS1950

(2.14)

This is measuring the same thing as Qj2014, the standard of living of country

j relative to the US in 1950. The paper by Parente and Prescott (and

the update I have prepared) use Q and not Z to measure progress across

countries. The reason may be that the method used to construct RGDP e

is very complex and not easy to understand. However, since the US is the

numeraire, it is considered more reliable. In any case, the two are very close



CHAPTER 2. INTERNATIONAL COMPARISON 26

in most cases. In Table 2.2, the column labeled “Z” shows numbers quite

close to those in the column labeled “Q”. See Appendix 2.9 for more on this

issue.

2.6 Other Data: World Bank and Maddison

The World Bank also has constructed a series for GDP that is comparable

across countries and years. This data is freely obtainable at the “World

Development Indicators” (WDI) website of the World Bank. The method is

quite similar to that described here, but is not as complicated. Some find

that a virtue, but others think it does not make some critical adjustments

necessary to fully reflect purchasing power parity.

For a small set of countries there are data sets that go back to the

nineteenth century. The most popular of these was constructed by Angus

Maddison and periodically updated. This data has very few variables and

mainly pertains to countries that have since become the richest of the world.4

2.7 Conclusion

We have just scratched the surface of the problem of international welfare

comparison. The actual calculations are very involved, and no problem-free

measures exist at present. Yet this should not stop us from using this data

in empirical investigations.

4The data can be found at: MaddisonProject

http://www.ggdc.net/maddison/maddison-project/data.htm
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2.8 Appendix A: The Dollar-Based PPP-ER

To construct Fj , the dollar-based PPP-ER for country j that we noted in

(2.8), the PWT first operates at the category level of C, I, and G. I illustrate

with C, the consumption category in which there are about m = 120 items.

The ICP (International Comparison Program of the UN) reports an average

relative price for each item in a country. Call these akijt where k stands

for the category (k = C, I,G), i stands for the item (of which there are m

within categories), j for the country (of which there are n = 182) and t for

the year. We drop the “k” and “t” subscripts for the time being, to reduce

clutter. The prices are relative to the United States’ price and are defined

as follows:

aij ≡
pij
piUS

(2.15)

For example, it i is the item “grain” and j is India, then aij would be an

“exchange rate” – that is, a Rupee/$ ratio – between the US and India based

on grain, not Big Macs.

The ICP also reports relative quantities qijt of each item in the C cat-

egory. These are found from knowing the relative expenditure on item i in

Country j and the US:

xij =
Xij

XiUS
(2.16)

where Xijt is the local-currency expenditure on item i in Country j in year

t (again, we drop t for convenience). So the relative quantities are:

qij =
xij
aij

(2.17)

These numbers will not have units. That is, in our example for India and

grain, qij might be .23, meaning India consumes only 23 percent as much

grain as the US.

Next, they use the data to construct a Laspeyres and a Paasche “price

index” for every pair of countries j and h. These are calculated as follows:

fljh =

∑m
i=1 aij ∗ qih∑m
i=1 aih ∗ qih

(2.18)
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fpjh =

∑m
i=1 aij ∗ qij∑m
i=1 aih ∗ qij

(2.19)

Notice that the units of the two indices are the same: Currj/Currh, the price

of currency h in terms of currency j, or how many units of currency j must

be given up to get 1 unit of currency h. The numerators in (2.18) and (2.19)

have units Currj/$ – like aij – and the denominator has units Currh/$. So

the ratio is Currj/Currh. We are summing over i, the different items in the

C category, so we are getting a weighted average of the aij “exchange rates”

based the importance of grain, fruits, automobiles, medicine, beverages, etc.

The only way that (2.18) and (2.19) differ is in the weights attached.

The geometric average of the two indices is called the Fisher Ideal Index:

fjh =
√
fljh ∗ fpjh (2.20)

This is the PPP exchange rate for the category C (Consumption) between

country j and country h.5 The PWT forms such PPP-ER’s for all three

categories, C, I, and G for all the countries and all seven benchmark years.6

How many bilateral PPP exchange rates are there when there 182 countries?

If there are n countries, then the formula is:

N =
1

2
n (n− 1) (2.21)

For example, if there were 2 countries, there is 1 exchange rate. With

4 countries, there are 6. With n = 182, N = 16, 471! Then, we have

to multiply this by 3 (for the categories) and again by 7 (for the seven

benchmark years). That makes 345, 891 different fjh’s that are calculated

with the basic data!

We now focus on the fjUS rates (that is, h = US). Concentrate on the

benchmark year of 2005. And let j be India again. Now, we have three

fIndiaUS PPP rates, one for C, one for I, and one for G in 2005. Each

was constructed using the method of (2.20). For any single category, say C,

5It is actually a bit more involved, and uses something called the GEKS index, but it
is quite similar to the Fisher Index.

6In addition, they do it for a few export and import categories, but I ignore those here.
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Equation (2.18) shows that the Laspeyres index of price relatives for India

is just the simple average of those price relatives, since aiUS = qiUS = 1 :

flIndiaUS =
m∑
i=1

(
1

m

)
aiIndia (2.22)

The Paasche index, however, is a weighted average of the price relatives:

fpIndiaUS =
m∑
i=1

θiaiIndia (2.23)

where the weights are the shares of the relative expenditure on item i in

India:

θi =
qiIndia∑
qiIndia

(2.24)

which have to sum to 1. Plug (2.22) and (2.23) into (2.20) to get the PPP-

ER-C rate for India and the US. To find PPP-ER-I and PPP-ER-G, similar

procedures are followed. That gives the three PPP-ER’s for 2005 for one

country, India. We find all sets of three (j/US) PPP-ER’s this way for all

182 countries in 2005. Then, repeat for the other six benchmark years. It

sounds like a lot of work, but once programmed, computers can do this work

in seconds.

Each benchmark year is self-contained in that the PPP-ER grids are valid

only for that year. That is, fUSUS = 1 in all of the benchmark years. Assume

that in 1990 in the C category fNewZealandUS = 1.10 and fNorwayUS = 7.14.

That means that Purchasing Power Parity would require that it take 1.10

New Zealand dollars to buy one US dollar (it actually took 1.68); and 7.14

Norwegian krone to buy a dollar in 1990 (it actually took 6.26). Those rates

would equalize the value of $100 in the purchase of consumption goods in

the three countries in 1990. In 2005, fUSUS = 1 again, but the other rates

might well be different. That is, within benchmark years, they are relative

to the US.

To link the years, the fjUS rates are multiplied by the US price index for

that year Πt. We defined Πt in Section 2.3 as the relative price of Big Macs

over time in the US. Now we use the general price index called the “GDP
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deflator”.

In 2005 Π = 1. That is, the base year for inflation calculations in the US

is 2005 so Π2005 = 1. That means for the benchmark year of 2005, multiply-

ing all of the fjUS rates by Πt has no effect. For every other benchmark year,

however, it does matter. For example, if Π1990 = .812, given the numbers

above, then fNewZealandUS ∗Π1990 = .893NZ/$.

Next, the PWT interpolates and extrapolates all the PPP category rates

for every year from 1950 to 2014, using data on the price levels for each of

the two countries. In this way, they have a complete set of PPP exchange

rates for every year for each of the three categories, normalized on the US

price level.

The last step is to combine or aggregate the three category PPP-ER’s

into one PPP-ER for each country in each year.

Above, we saw that the ICP collects data on domestic-currency expendi-

ture Xij on each item in each category in each country. If we add the expen-

diture on all the items in category C we can call the result XC
j =

∑m
i=1X

C
ij .

Conceptually, note that XC
j = p′ijqij , where qij is a vector of the quantities

produced of each item in category C in country j. Therefore, XC
j , XI

j , and

XG
j are the total money amounts that people spend in their own currencies

on, respectively, the C category, the I category, and the G category. Divide

each of these by fjUS to get:

Qkj = Xk
j /f

k
jUS = p′iUSqij (k = C, I,G) (2.25)

Each Qkj is the expenditure for category k in Country j expressed in US

dollars of the current year and fkjUS is the PPP-ER for category k in country

j. The vector notation suggests that it is as if we knew the prices of the

goods in dollars not local currency.

Now add up all the Qkj in one country to get GDP of Country j measured

in US dollars. That is:

Y $
j =

∑
k

Qkj (2.26)

Note that the k drops out from the left-hand side because we are adding up
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over the three categories for country j.

Finally, we find the overall PPP-ER in dollars, which we call Fj reported

in (2.8) for Country j as:

Fj =
Yj

Y $
j

(2.27)

where, as defined in (2.1), Yj is GDP in local currency prices.7

2.9 Appendix B: The Method of Parente and Prescott

Parente and Prescott – and my update that we go over in class – use the

PWT data for 102 countries to construct a consistent matrix to compare

real GDP per capita. The first step, for any year t, is to form the ratio of

CGDP e for Country j and the US:

Ljt =
CGDP ejt
CGDP eUSt

(2.28)

Although they refer to this ratio as a country’s year-t relative wealth, it is

better to call it a nation’s relative income or relative production (remember

that the value of income and production are equal). In Column 5 of Table

2.2 we show the values for Ireland of LIret for t going from 1990 to 2014. To

take an example, LIre,1997 = 0.64: this means that Ireland in 1997 produced

only 64% of the ”average good” compared to the US in 1997.

To construct a measure that is comparable across time as well as space,

each Ljt is multiplied by the following factor:

ft2011 =
RGDP eUSt
RGDP eUS2011

(2.29)

This is the adjustment factor for each year. This ratio is the value of real

GDP produced per person in the US in year t, relative to the amount pro-

duced per person in the US in 2011 (the base year). For example, f2004 = .75

7In reality, the construction is a lot more complicated than outlined here. In particular,
Equation (2.26) is too simple. Instead, the PWT uses something called “reference prices”
to add up the domestic outputs, qij . Here, I use dollar prices in the US in year t. Reference
prices are weighted averages of dollar category prices in all the countries.
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means that 25% less of the average good was produced per person in the US

in 2004 compared to 2011.

The multiplication of Ljt by ft yields a measure of real per capita GDP

in year t for Country j that is relative to the US in 2011 (the base year). In

other words, the product Ljt×ft is measuring exactly the same thing that is

measured by Z in (2.14). We can show this by thinking of the summations

as the multiplication of two vectors. Thus:

Q = L× f =
p
′
t • qjt

p
′
t • qUSt

× p
′
2011 • qUSt

p
′
2011 • qUS2011

=
qj,t

qUS,2011
(2.30)

That is, the product measures the quantity of the typical good in Country

j in year t relative to the quantity of the typical good produced in the US

in the base year, 2011.

The measures Z and Q are, however, slightly different. Columns (6) –

(8) of Table 2.2 present the data for the construction of the Parente and

Prescott measure for Ireland from 1990 to 2014 (again, the reference year is

the base year 2011). The constructs for the US and Ireland for Ljt, ft, and

Q = Ljt×ft are shown. The last column shows Zt for Ireland. The last two

columns are very close in magnitude.



Chapter 3

Principal Eras of Economic

History

3.1 Introduction

Human societies have been hit by both slow and precipitous changes to

population, technology, and institutions since the dawn of time. Modern

economies are vastly more complex than early societies, yet we can learn

valuable lessons from the study of transitions from one economic era to the

next.

This chapter simply sets out, in extremely condensed form, the basic

progression of the economic eras that have characterized the world (mainly,

the western, industrialized world). This will help place in context the work

of Douglass North (Structure and Change in Economic History, Chapter 7,

1981) that explains the transition to agriculture from hunting and gathering,

the first economic revolution.

3.2 Eras

3.2.1 Hunting and Gathering

1 Million BCE to 8,000 BCE

33
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Small bands of people spread throughout the world. Production from hunt-

ing wild animals and harvesting natural crops. Extensive use of large amounts

of land. Population grows very slowly. Slow, but perceptible, development

of new technologies. Government is tribal. Property rights are Common

Property, but territorial.

3.2.2 Neolithic Agriculture

8,000 BCE to 4,000 BCE

Bands become sedentary and employ agriculture primarily. Groups become

larger. Faster population growth. Trade and division of labor increase.

Technology progresses faster. Government remains tribal; property rights

are Communal, but exclude outsiders.

3.2.3 River Empires

4,000 BCE to 800 BCE

Rise and Fall of the great riverine Empires: Sumeria, Egypt, Babylonia.

Great expansion of trade in the Mediterranean. Population may have grown

at very fast rates. Technological advances were far greater than before.

Written language appears. Government was autocratic, relying on religion;

property rights associated with the deity and ruler.

3.2.4 Classical

800 BCE to 400 CE

Greece and Rome. Coinage appears. Advances in legal systems and the arts.

Commerce expands, as do living standards. Population may have been very

large. Technology stifled for commercial purposes. Government autocratic;

property rights well-defined for certain groups.
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3.2.5 Dark Ages

400 CE to 1,000 CE

Fall of Rome and retreat to Feudalistic self-sufficiency in manors. Towns

disappear and trade declines greatly. Population and living standards fall

considerably. Monastic learning; few advances in technology. China ad-

vances beyond Europe. Government chaotic, based on force; property rights

very insecure.

3.2.6 Revival

1,000 CE to 1350 CE

A revival centered on Northern Italy. Increasingly fast population growth

leads to dense population and increasing specialization and commercial re-

vival. Migrations into the Baltics and the East. Technology begins to ad-

vance more rapidly. Mongol invasions halt Chinese development. Govern-

ments diverse around the world; property rights well defined in certain parts

of Europe. Bourgeoisie arises.

3.2.7 Black Death

1350 to 1500

War, famine, Black Death lead to a general retrogression in population and

real income. Population declines by 30% to 50% in Europe. Commerce

contracts, self-sufficiency returns, as production retreats to the country.

Technology stagnant, except for war technology. Governments defensive;

property rights show no progress.

3.2.8 Renaissance and Enlightenment

1500 to 1780
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Renaissance to Enlightenment and Age of Discovery. Expansion of trade,

population, and knowledge — again. Economic center moves to North At-

lantic (Holland, England, Belgium) and away from Northern Italy. Emer-

gence of nation-states and political integration. Technology begins to make

important strides. Governments become more central and larger; property

rights differ greatly in Europe and the world.

3.2.9 Industrial Revolution and Expansion

1780 to 1900

Industrial Revolution and expansion. Spread of industrial technology around

the world. Colonialism. Migrations and economic integration. Growth

becomes fast and routine in some nations. Population growth in Europe is

astounding. Technology drives unprecedented growth from Europe to North

America. Governments become increasingly democratic; property rights in

some places become secure for the first time.

3.2.10 Scientific Revolution and Modern Growth

1900 to Present

Scientific Revolution. Increase in living standards in some nations based on

application of science to production. Appearance of huge disparities in in-

come across nations. Population growth falls dramatically in rich countries.

Technology proceeds extremely rapidly. In developed nations, governments

increasingly democratic; property rights increasingly secure.

3.3 Conclusion

History can provide important lessons for economic development, and it is

useful to be aware of the kinds of transitions that have already taken place.

The current situation is novel in the sense that some areas have gotten far

ahead of others in terms of technology and living standards. The challenges

of dealing with this state of affairs are clear, most especially politically.
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Advantages also exist, however, since there is hope that developing nations

can find ways to take advantage of the new techniques of both production

and political organization.



Chapter 4

Rates of Growth

By: John McDermott (Economics 705)

4.1 Introduction

This chapter sets out some important technical results on the meaning and

manipulation of growth rates and interest rates in both discrete time and

continuous time. Without a basic understanding of the movement of vari-

ables over time, and their changes over very short intervals, it would be

impossible to think clearly about economic development.

4.2 Growth Rates: Discrete and Continuous

In economic dynamics, we may use one of two types of analysis: discrete

or continuous.

In the discrete framework, the variables of interest take on a single value

per time period (usually, a year). As time advances from Year t to Year

t+1 to Year t+2, etc., the variable’s value changes: it jumps discretely at

the end of each period to its new value to begin the next period. Within

periods, the variable does not change at all.

In the continuous framework, the variables are constantly changing at a

steady rate through time t.
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Figure 4.1: Population Over Time: Discrete and Continuous

We illustrate both types of change or growth with the population of

Europe, which we shall refer to as N . The centralizing concept of growth

is very simple: the annual percentage change in the variable in question.

This is also the principal concept for interest and capital appreciation and

we shall discuss these concepts as well. A key word here is "annual": all

rates of interest, growth, or change must be defined fundamentally in terms

of a precise time dimension. It is almost always a year.

Although we will use real data shortly, assume at first that population

is growing at about 10% per year. Figure 4.1 shows the paths of N under

both discrete and continuous growth for the first five years, assuming it

began at 100 (that is, 100 million people). The actual growth of population

in Europe was far smaller.

The smooth curve labeled N(t) is the continuous case. The choppy curve

labeled Nd(t) reflects the discrete case. Notice that the two paths both begin

at N(0) = N0 = 100 million.

The choppy path is the easiest to explain, so we begin there. The formula

for N after one year is given by the basic application of percentage change:
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N1 = N0 (1 + nd) = 100(1.1) = 110. (4.1)

In the above expression, nd is the geometric growth rate, which here is .10

or 10%. To find the value for subsequent years, we may apply the above

formula repeatedly. For example, for 2 years it is:

N2 = N1 (1 + nd) = N0 (1 + nd)
2 = 100(1.1)2 = 121. (4.2)

For t years, where t is any integer, we find that population is given by:

Nt = N0 (1 + nd)
t. (4.3)

We can always calculate the geometric growth rate if we have data for any

two adjacent years. This formula is well-known and follows from (4.3):

nd =
Nt −Nt−1

Nt−1
. (4.4)

Now consider the smooth growth path also shown in Figure 4.1. This

corresponds to exponential or continuous growth. In terms of interest, it cor-

responds to continuously compounded interest. The formula for the smooth

line is given by:

N(t) = N(0)ent = N0Exp(nt) , (4.5)

where n is the exponential growth rate. The rates n and nd are not the same,

although they are closely related and one can be found from the other. The

variable e is simply a number. It is a natural constant, like π, and it is

given by e = 2.71828....... This number never repeats and is not completely

known. It is sometimes clearer to write the exponential function as Exp(nt),

but the meaning is exactly the same as ent.

The number e is rather mysterious. It can be derived in several different

ways and arises in different contexts in nature. To illustrate one way of

finding it, we consider the case of compound interest, which is just another

growth process. Let us assume that the interest rate r is 100 percent; that
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is, that r = 1.0. So, if you had $A on January 1, 2018 and put it in the bank

at simple annual interest, you would have $2A on January 1, 2019. Using

the formula (4.1), we could write At+1 = At (1 + r) = At (1 + 1) = 2At,

where At is the amount you put in at the beginning of year t and At+1 is

the amount you have at the beginning of year t+ 1.

Now, instead of letting this process go forward over several years, let

us do something else. Let’s compound the interest within one year. First

define the sub-period: a month, a week, a day, etc. Let’s take a month.

That means that each month the bank pays you r
12 = 1

12 percent interest, so

if you began with At = $1.00, after one month you have $
(
1 + 1

12

)
. That is

now the principal, so that after two months you have:

$

(
1 +

1

12

)
∗
(

1 +
1

12

)
(4.6)

and after a year you have:

At+1 = $

(
1 +

1

12

)12

= $2.61304 (4.7)

Notice that this is a lot better than the $2.00 you’d get from a simple

annual interest rate of 100 percent. If the interest were compounded daily,

we would have $
(
1 + 1

365

)365
= $2.71457 after one year. It’s bigger, but not

much bigger. What happens if we let the sub-unit get very, very small, so

the number of units in a year – call it v – gets very, very big? This is what

happens:

lim
v→∞

(
1 +

1

v

)v
= e = 2.718281828.... (4.8)

Remarkable! It converges to the natural constant e. You can easily test this

with a calculator by plugging in a number like v = 10, 000. It will be very

close to the e on your calculator.

So, if you had $At to start with, if interest were continuously compounded

at 100 percent per year (the “per year” is very important) you would have

$At+1 = $Ate at the end of the year. And, if you kept it in the bank for 2

years, you would have $At+1 = $Ate
2 at the end. Why? Because you end
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the first year with Ae, which is then the beginning amount for the second

year, so you have (Ae) e = Ae2 after two years.

In fact, for any length of time t, whether or not it is an integer, if the

interest rate is 100 percent, you end up with $Aet after t years.

Finally, what if the interest rate is a more reasonable number like r = .05?

Then we get:1

A (t) = A (0) ert (4.9)

This looks a lot like (4.5). That is because we can think of population

growing in the same way that money in the bank grows. Instead of an

interest rate r, though, we have the rate of population growth n.

The exponential growth rate n that corresponds to the geometric yearly

rate nd is always smaller than nd. How are nd and nrelated? Using (4.3)

and (4.5) and letting t = 0 we note that the following must be satisfied:

N (1)

N (0)
= (1 + nd) = en (4.10)

If we knew nwe could find nd easily: nd = en − 1. But what if we know nd?

How do we find n? For that we need the natural log function, discuss below.

4.3 Exponential Growth Rates in Practice

We go through the bother of discussing exponential rates because they are

much easier to work with than geometric rates. For this section, recall from

high-school math that x2x3 = x5 and that x3/x2 = x .

Consider, for example, the progress of per capita output y = Y
N over time

(here Y is GDP), something that we are very concerned about. Assume that

Y is growing exponentially at the rate g while N, as before, is growing at

the exponential rate n. Then it is straightforward to show that y is growing

at the rate g − n. Here is how to show it:

y(t) =
Y (t)

N(t)
=

Y0e
gt

N0ent
= y0e

(g−n)t = y0Exp[(g − n)t] . (4.11)

1See Appendix A to this chapter, to see how to derive these two results.
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We infer by inspection that the rate of change of y is (g − n).

Consider now revenue R = PQ: revenue is price times sales. You should

be able to work out that the growth rate of revenue is equal to the growth

rate of the price plus (not times) the growth rate of sales.

Another example concerns a popular production function. Let us say

that output depends only on capital and that there are diminishing returns:

Y = Kα, where α < 1. If capital is growing at the rate gK , how fast is

output Y growing? We derive it as follows.

Y (t) = K(t)α =
(
K0e

gKt
)
α = K0

α
(
egKt

)
α = Y0e

αgKt. (4.12)

From this we see that the growth rate of Y is given by g = αgK . This

derivation relies on the result that
(
x2
)3

= x6.

You should be able to show that the growth rate of Z =
(
K
N

)β
is given

by: gZ = β (gK − n).

One final problem: find the growth rate of Y if the production function

is Y = KαLγ where L is workers, which differs from population. That is,

find g in terms of the growth rates of capital gK and workers gL (which may

equal n even though N < L ).

These results are even more important than they might seem because

they generalize to instantaneous growth rates, no matter what the under-

lying process that is generating the change. We discuss this in more detail

below. Next, however, we discuss the natural log function.

4.4 Natural Logs

Everyone knows what a square root is. But defining it out loud can be

slightly difficult. The reason for that is, I think, that all a square root

does is undo a square! Without the square of a number, the square root is

meaningless. To see this more formally, define the following function that

squares a number:
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S(x) = x ∗ x = x2 , (4.13)

where we may call S(x) the “square function”. That is, S(5) = 25. Simple

enough.

Now define the “square root function”R(x). This function just reverses

or undoes the square function. That is, R(25) = 5. It is hard to write

down a general function the way we wrote (4.13) above. Perhaps the most

informative way to write it is as follows:

S(R(x)) = x and R(S(x)) = x. (4.14)

That may look odd but it just says what we all know: (
√
x)

2
= x and√

x2 = x.

The reason to bring this up is that the natural log function ln(x) is much

the same as the square root. It simply undoes the exponential function. That

is:

ln (ex) = x and eln(x) = x . (4.15)

One very important property of the log function is that:

ln(AB) = lnA+ lnB. (4.16)

Here is how to show (4.16). Use (4.15) to express AB = elnAelnB . But the

latter can be written as elnA+lnB . Now take the log of the first and last

expressions in that sequence. They must be equal, which proves (4.16). It

also follows that ln(A/B) = lnA− lnB, another very useful result.

Now we can show how to find nd if we know n. From (4.10), take logs

of both sides to get:

ln (en) = n = ln (1 + nd) (4.17)

So if nd = .10, then n = .09531. An exponential growth rate of .09531 is

sufficient to keep up with a simple annual growth rate of .10, which is what

is shown in Figure 4.1.
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We illustrate the use of the natural log in visualizing the population of

Europe in the next section.

4.5 The Population of Europe

Our best estimates show that Europe’s population was 81 million in 1500

AD and rose to 728 million in 2000. We shall simply assume or impose

exponential growth with a constant growth rate from the beginning to the

end of the 500 year path. This means that we assume the following is

satisfied:

N2000 = N1500e
nt. (4.18)

Notice that we know everything about (4.18) except the value of n.

Thus, t = 500, N1500 = 81, and N2000 = 728. To find n, we substitute in

the values, then take the natural log of both sides of (4.18) to get:

ln728 = ln81 + n500 =⇒

n =
1

500
(ln728− ln81) = .0043917 or .439% . (4.19)

In other words, the population of Europe grew, on average, at less than 1
2%

.

Figure 4.2 shows our hypothesized, exponential path for population. Of

course it was not that smooth: war, famine, and disease still wreaked havoc

on the European population even after 1500. Only the first and last points

are “known”: the others are generated to make the path smooth.

Figure 4.3 shows the path of the natural log of the population over this

time period (again, our hypothesized path). It is given by

lnN = ln 81 + .00439t

The interesting thing here is that the natural log of a variable that is growing

exponentially in nature is a straight line. It is amazing how many economic
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Figure 4.2: Population of Europe

time series when transformed into the natural logarithm (like the natural

log of US GDP per capita) are straight lines over many years.

4.6 Negative Exponential Growth

Nothing prevents the growth rate from having a negative value. For example,

if population were growing faster than GDP, the growth rate of y would

be negative. You can see that this is a possibility from Equation (4.11).

Assume that g = .02 and n = .04, which is large, but not out of the question.

Figure 4.4 shows what the path of y through time would look like. It is

amazing how quickly y(t) falls to near-zero at only a 2% annual decline.

Luckily, such long-run declines are rare, even with war and very unstable

government, although they are more common than you probably think.

Another case is depreciation of capital, like a house or car or factory.

That is, wear and tear on machines makes it gradually decline in ability to

produce. Let δ be the rate of depreciation; say, δ = .06, so that machines

wear out at the rate of 6 percent a year. If this is a continuous (exponential)

rate, we express this as:

K (t) = K (0) e−δt (4.20)
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Figure 4.4: Negative Exponential Growth
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4.7 Instantaneous Growth Rates

So far, we have treated rates of change over very long intervals, seeking to

find the average annual growth rate – either discrete (also called geometric)

or exponential (also called continuous). Now we focus on a smaller time

period so that the results pertain to any variable moving through time.

First, let’s consider a yearly percentage change in the population. From

(4.4) and (4.19) – with t = 1 – we may say that the two rates nd and n are

approximately equal. Let us write them as follows:

nd =
N1996 −N1995

N1995
=

∆N

N
≈ n = lnN1996 − lnN1995 = ∆lnN . (4.21)

The symbol “∆” means “change in” over a specific time period. The squiggly

equals sign " ≈ " means “approximately equal to”.

What if we were interested in the yearly percentage change over a smaller

interval, like 6 months? Again, everything is based on a yearly rate. This

is very important. To find the answer, we would “pro-rate” the percentage

change by dividing through by the fraction of the year over which the change

takes place. We call this fraction “∆t”. Thus, we re-write (4.21) as:

nd =
∆N

∆t

1

N
≈ n =

∆ lnN

∆t
. (4.22)

The above is very general, since for a year ∆t = 1. For 1 month, ∆t = 1
12 ;

for a day, ∆t = 1
365 . The change in population is accordingly measured only

over the month or day as the case may be. By dividing this way, we keep

expressing the change on an annual basis.

Although we cannot show it here, something very interesting happens

as the time interval gets short: the approximation gets better. For a very

short – infinitesimally short – interval, the two are exactly the same! We use

the symbol “d” in place of “∆” to refer to this extremely short time interval.

Thus, we may now write:

n =
dN

dt

1

N
=
d lnN

dt
. (4.23)
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Perhaps an example will help clarify the basic idea. Let’s say that at

the very beginning of the day of July 16, 2005 the population of the Czech

Republic was N = 10.24 million. On that day, the net increase in the

population was 420 people (not millions!). First, note that the first term in

(4.23) can be written as:

n =

(
420

1
365

)(
1

10.24 ∗ 106

)
= 0.0149707

How do we interpret this? It is the percentage by which the Czech population

would have grown over the year, if the rate of 420/day had continued. Again,

note that the year is the key. This is about 1.50% growth rate for the Czech

population.

The first ratio of (4.23), dN
dt , is called the time derivative of the path

of population and it is very important in growth theory. Notice that it is

closely related to the growth rate or percentage rate of change, n. They differ

only by the factor N . Often, we use the dot notation for the time derivative:

Ṅ =
dN

dt

We can then write (4.23) as:

n =
Ṅ

N
=⇒ Ṅ = nN . (4.24)

Again, the meaning of Ṅ is the absolute change in N over a small interval,

expressed on a yearly basis.

What about the second expression in (4.23), the log form? The change

in the log of N can be written as ln[(N + ∆N)/N ] . This uses (4.15) above.

Here is the math for calculating the growth rate using logs:

n2 = ln

(
10.24 ∗ 106 + 420

10.24 ∗ 106

)
∗ 365 = 0.0149704

Notice that the two rates are extremely close. This is because our time

interval – a day – is very short. If we did a calculation for a minute, the
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two numbers would be even closer.

Although I have used population here, the ideas are applicable to any

economic time series, such as GDP, capital, or the price level. In the case of

capital K for example, we can use the example of depreciation from above

to write:

K (t) = K (0) e−δt ⇐⇒ K̇ = −δK ⇐⇒ K̇

K
= −δ ⇐⇒ gK = −δ (4.25)

It is easy to go back and forth between growth rates and time deriva-

tives. In the next chapter we will employ these techniques to discuss the

fundamental model of economic growth.

4.8 Related Concepts

4.8.1 Present Value

Suppose you will receive $B in year T . What is that worth today? You

could say it is worth the amount $A , such that, with interest, $A will grow

to $B in T years. As before, we may analyze the question in either discrete

or continuous time.

In discrete time, A must satisfy:

A(1 +R)T = B =⇒ A =
B

(1 +R)T
. (4.26)

In continuous time, A must satisfy:

AeRT = B =⇒ A = Be−RT . (4.27)

Here is a simple problem. Find the present value of $100 to be received in

10 years, if R = .03. Find both the continuous-time value and the discrete-

time value.

According to (4.26): A = 100
(1.03)10

= $74.41.

According to (4.27), we find: A = 100e−.03∗10 = $74.08

At very low interest rates, the two are very similar.
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4.8.2 Annuity

Let’s say you had $A today. What constant amount could you consume each

year forever with that amount? The answer is what we call the “annuity

value” of the principal.

To find the answer, we note that in continuous time, the initial amount

must equal the integral of the present value of each year’s constant consump-

tion, C. That is:

A =

ˆ ∞
0

Ce−Rtdt =⇒ C = RA (4.28)

The formula is very simple and intuitive: you can consume the interest

on the asset forever.

In discrete time, the condition is still the sum of present values, which

leads to:

A =
∞∑
t=0

C

(
1

1 +R

)t
=⇒ C =

(
R

1 +R

)
A (4.29)

If Jane has an inheritance $250,000, how much could she consume forever

given that the interest rate is 10%? Find the answer in both continuous and

discrete terms.

In continuous terms:

C = .10 ∗ 250, 000 = 25, 000 (4.30)

In discrete terms:

C =

(
.10

1.10

)
250, 000 = 22, 727.30 . (4.31)

4.9 Conclusion

These are important techniques for use in all advanced economics and finance

courses. After working with them for a while, it becomes much easier to use

them and understand why they are so valuable.
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Appendix A: Exponential function with r 6= 1 and

t 6= 1

We first address the issue that t may not be one year. The original monthly

compounding formula for one year is given by (4.7). But we could easily

write this as:

W =

(
1 +

1

12

)12∗t
(4.32)

where t is measured as a multiple or fraction of a year. So if t = 1, the

money is left in the bank for one year. If t = 2 it is left for 2 years. If

t = 1/2, it is left for 6 months. It can be bigger than 1 or smaller than 1 but

it must be in multiples of 1/12. Or, in multiples of 1
v where v is the number

of times the compounding takes place within a year. So, the formula (4.8)

now becomes:

lim
v→∞

[(
1 +

1

v

)v]t
= et (4.33)

As v gets very large, t becomes continuous since every number is a multiple

of 1
v .

To extend the formula to the case in which r is not 1.0, write (4.32) as:

Z =

(
1 +

r

12

)12∗t
(4.34)

That is, if r = .10 is the annual interest rate, then you receive r
12 = .00833

each month. For the general case, it is:

Z =

(
1 +

r

v

)vt
=

[(
1 +

r

v

)v/r]rt
(4.35)

Now take the limit again, to get:

lim
v→∞

Z = ert (4.36)

which is what we set out to show.



Chapter 5

The Neoclassical Growth

Model

5.1 Introduction

This chapter sets out a basic version of Solow’s (1956) classic paper that

has influenced an entire generation of economists and policy makers. This

model relies on the accumulation of physical capital to explain how living

standards change over time. The fact that capital’s marginal productivity

declines as more is accumulated, however, means that an economy with a

constant saving rate achieves a steady-state equilibrium with no growth.

Constantly rising living standards are possible only with continuous techno-

logical change. Without such technological advance, growth is only tempo-

rary, or transitional.

5.2 Equations of Change

At the center of the neoclassical model is the stock of physical capital, K.

The change in the capital stock per unit of time over a small time interval

is given by the following equation:

K̇ = sY (t)− δK(t) . (5.1)

53
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As in the last chapter, we use the "dot" notation to refer to the change

in the variable per unit of time:

K̇ =
dK

dt
(5.2)

On the right side of (5.1), s is the saving rate, δ is the depreciation rate,

and Y is GNP or national income. The way to interpret (5.1) is that change

of the capital stock K per unit time is equal to the difference between the

amount saved and the amount of wear and tear. Total national saving (all

of which is assumed to go to new capital) is sY , the saving rate times total

income. For example, assume that δ = 0, the saving rate is s = .20, and

Y = 400goods
Y ear . Then the capital stock increases by 80 units per year.

Physical capital does depreciate, however, so we need the second term in

(5.1) take account of this process of wear and tear. If there were no saving

(s = 0) capital would wear out at a rate proportional to its size. Dividing

both sides of (5.1) by K and using (5.2) and (??) shows that, if s = 0,

then K capital would follow a negative exponential process. The absolute

decline in capital from depreciation is not constant, even though the rate of

decline is constant. For example, if the capital stock were 100 units, and

the depreciation rate were δ = .08, then over one unit of time 8 units of

capital simply disappears, totally worn out. In the following period, if there

has been no saving and investment, then 7.36 units disappears (92 * 0.08 =

7.36).

Labor, L, is changing through time, too. We assume that it is a simple

positive exponential process as we did in Chapter 4. Moreover, we assume

that the labor force is growing at the same rate n as population:

L(t) = L0e
n∗t. (5.3)

We saw in Chapter 4 that we may express the growth rate:

n =
L̇

L
(5.4)

from which we can find the change per unit of time of L:
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L̇ = nL. (5.5)

Notice that the change in L
(
L̇
)

is actually rising over time, even though

its growth rate is constant at the rate n.

5.3 Production

Why do people bother to accumulate capital? Because it is useful for pro-

ducing goods that may be consumed. We use the following production

function:

Y = Kα(AhL)1−α (5.6)

This is called the Cobb-Douglas production function and is very widely used

in growth theory and other production theory. Here, A stands for “labor-

improving technology”, and h stands for human capital or education that

improves each worker. This function shows constant returns to scale in K

and AhL together, but diminishing marginal product to either input sepa-

rately (the appendix defines and derives the marginal product of capital).

For the time being, let us assume that h = 1.

Technology, A is growing at the rate g:

A (t) = A (0) eg∗t (5.7)

Define B as follows:

B ≡ A1−α (5.8)

We will refer to B as “technology”, too. We do this because we can then

write the production function as

Y = BKαL1−α

since we have assumed h = 1. This is the form in which it is often written,

but I began with Eq. (5.6) to emphasize two features: (1) human capi-
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tal improves labor; (2) technology must be labor-saving – as is A – to be

consistent with balanced growth (as defined later).

We are most interested in output per worker and output per capita (that

is, per person) in any nation. If we divide both sides of (5.6) by L (with h

= 1) we get output per worker:

Y

L
= y = Bkα, (5.9)

where:

k ≡ K

L
. (5.10)

Output per worker in the economy depends on technology B, and the

amount of capital per person (the capital-labor ratio), again assuming that

h = 1 everywhere. Countries with lots of capital (in the form of machines)

and relatively few workers will have high standards of living.

5.4 Growth Equation for k

We have already seen that the growth rate of labor is the constant n. Things

are not so easy in the case of capital and output. In these cases, the growth

rate is not constant over time, and depends on the state of the system.

Using our results from the last chapter, we can always express the growth

rate of a ratio – like k – as the difference between the growth rates of the

numerator and the denominator. That is, over a short span of time, any

continuous variable behaves just like an exponential process. So in the case

of k have:

gk = gK − n =⇒ k̇

k
=
K̇

K
− n . (5.11)

Multiply both sides of (5.11) by k then use (5.1) and (5.4) to get:

k̇ =
K̇

L
− nk = s

Y

L
− δk − nk = sy − (δ + n)k (5.12)

Use (5.9) to re-write this as:
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k̇ = sBkα − (δ + n)k . (5.13)

This is the basic growth equation for the capital labor ratio.

Figure 5.1 shows how to find the path of k through time. There are

three curves, one drawn for y = Bkα, one showing sy = sBkα, and one

drawn for the straight line (δ + n)k. To understand Figure 5.1, note that

for any k the quantity sBkα is either larger or smaller than the quantity

(δ + n) k. If larger, then k itself is rising ; if smaller, then k is falling.

The long-run, balanced-growth equilibrium point is determined by Point

Q. Let us call this value k∗. At Q, the (δ + n) k curve intersects the sBkα

curve, so that net saving of new capital just balances the depreciation of

existing capital, plus provides enough capital to equip all the new people

being born.

For values of k below k∗, saving is greater than depreciation and popu-

lation growth, so k is growing. For values of k greater than k∗, saving is not

enough to replenish the stock and provide for new workers: k is falling. In

this sense, the system is stable.

To find the balanced-growth value of k, set k̇ = 0 in (5.13) and solve

for k. This gives us k∗, which is called the steady-state stock of capital, per

worker since if k = k∗ then the capital stock is not growing nor is output

per capita y changing, as we may see from (5.9).

Graphically, we find k* where the lower two lines in Figure 5.1 cross.

The important point to understand is that k rises whenever it is below k*. If

k is above k*, it falls. In other words, k is attracted to the unique level k*

and it will approach that value over time.

5.5 The Steady State

The value of k goes to its steady-state value over time. To find this value, as

noted above, we have to set (5.13) to zero, and solve for k. This procedure

yields the following expression for the steady-state k:
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Figure 5.1: Steady State in the Neoclassical Model

k∗ =

(
sB

δ + n

) 1
1−α

= A

(
s

δ + n

) 1
1−α

= 598.49 (5.14)

Now substitute (5.14) into (5.9) to find the value of per-worker output in

the steady state:

y∗ = B ∗ (k∗)α = A2−α
(

s

δ + n

) α
1−α

= 319.20 (5.15)

Consumption per worker can be found from the above:

c∗ = (1− s)y∗ (5.16)

We can use the above equations to do simple policy experiments con-

cerning the effects of changes in saving rates, technology, and population

growth. As we see from Equations (5.14) and (5.15), increases in technology

B or decreases in population growth n are always good: they raise k* and

y* and therefore, c* in Equation (5.16).

The saving rate s presents a different case. An increase in s raises y*,

but reduces (1− s), so there are two competing effects on the consumption

of each worker c∗ – see (5.16). In fact, there is a unique value for s such that
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c* is maximized. This is the so-called Golden-Rule saving rate. Edmund

Phelps won the Nobel prize in 2006 for discovering this rate. It would never

be prudent to save more than the Golden-Rule saving rate. In fact, even

that rate is too large to be optimal since it ignores the fact that present

sacrifice is worth more than future steady-state consumption.

Finally, notice that by (5.11) in the steady state the stock of capital K

grows at the same rate as the labor force L; that is, at the rate n. If this

were not true then k could not be constant, as it is in the steady state. In

other words, over time the growth in K adjusts down to n, until the ratio

k is constant. Growth falls because as k rises the marginal productivity of

capital declines, reducing the growth rate of K to the rate n.

Growth ceases in the Neoclassical model. In the absence of technological

change, the economy’s living standard approaches a constant. We know that

this cannot reflect the actual course of history. Thus, if this model is correct,

technical change – a rise in A – must have played a major role in lifting the

standard of living in the last two centuries. The growth that comes from

accumulating capital is at most transitional growth, growth that may be

important in certain phases, but ultimately limited.

5.6 The Growth Rate of k

The capital-labor ratio will only be constant in the steady state. In general,

the following expression – derived from (5.13) – gives the growth rate of k

when the economy is not at the steady state:

gk =
k̇

k
= s

(
B

k1−α

)
− (δ + n) = s

(
A

k

)1−α
− (δ + n) (5.17)

This growth rate is illustrated as a function of k in Figure 5.2. The growth

rate is zero – so the steady state is attained – where the line crosses the

horizontal axis. This occurs at k*, which is the same capital per worker as

in Figure 5.1. The growth rate is positive, but falling, whenever the actual

value of k is less than k* ; it is negative, but rising, when k > k∗. This is

what we mean by convergence.
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Figure 5.2: The Growth Rate of k

The existence of convergence, or the lack of it, is a topic of active inves-

tigation. If each nation had the same s, A, and n, they would all converge to

the same income level. That is, y* and k* would be the same across coun-

tries if these three exogenous variables were the same. This is what is call

Absolute Convergence. We do not observe this in the data, which suggests

that there are differences in at least one of the three variables (or that the

model is wrong – a possibility we consider later).

Figure 5.2 shows a case of Conditional Convergence. Think of the dashed

line as pertaining to a country with better technology or laws, which makes

productivity A higher than in the other country. The rich country will

converge to k∗2 while the country with the low A will converge to k∗. Notice

that in this case the growth rate of k will be higher if either the beginning

level of the capital stock k0 is low, or if A (or s) is high. We will test for

conditional convergence using real data later.

5.7 Continuous Technical Change

We now return to (5.1) and (5.6) and assume that A – not B – is rising

continuously at the rate g. That is: A(t) = A (0) eg∗t. This means that B is
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rising at the rate (1− α) g.

From (5.1) we see that:

K̇

K
= s

Y

K
− δ . (5.18)

Let us assume that a balanced-growth path exists along which K is growing

at a constant rate. If so, the above shows that Y
K is constant, so that Y

grows at the same rate as K: gY = gK . Now take the growth rate of the

production function (5.6) to get:

gY = (1− α) g + αgK + (1− α)n . (5.19)

This uses the fact that gB = (1− α) g.

Substitute in gY = gK – since in the steady state they are equal – and

recognize that gy = gY − n to see that:

gy = gk = g . (5.20)

So the rate of technical progress determines the growth rate of per capita

income y and capital per worker k. Given (5.16), we also know that in

balanced growth gc = gy = gk = g.

5.8 Endogenous Growth: A Simple Alternative

Model

Assume that total output Y depends only on a broad interpretation of K,

one that includes human capital. Labor does not even enter the production

function. So total output is given by:

Y = AK . (5.21)

In this simple formulation, there are no diminishing returns to capital. In

essence, α = 1, so the gk curve in Figure 5.2 becomes horizontal, so the
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growth rate is

gk = sA− (δ + n) (5.22)

.

This is the simplest in a class of models for which positive growth shows

no signs of diminishing, no matter how great the stock of capital becomes.

One important implication is that there is no cross-country convergence,

either absolute or conditional. Countries that are similar to each other (in

terms of s, A, δ, and n) whose y is below that of leaders never catch up. A

second implication, however, is that if a nation gets better technology A (or

saves more, s) it will grow faster forever, not just temporarily.

5.9 Growth Accounting

Is there any way to tell how much of observed growth in a country is due to

changes in inputs ( K and L) and how much is due to technical change A?

The answer is Yes, but only if we assume that the economy is competitive.

Take the production function (5.6) and express it in growth terms as:

gY = gB + αgK + (1− α) (gh + n) . (5.23)

The basic insight, due to Solow (1957), is that α is equal to capital’s

share of national income if factor markets are competitive. With perfect

competition, the payment to capital owners is equal to the marginal product

of capital (see the appendix). When this holds, it can be shown that a

constant fraction of GDP is paid out to owners of capital, and that fraction

just happens to equal α. We can estimate α, then, by using real-world data

to find the fraction of GDP that is paid out to capital owners.

We have data on everything in (5.23) except gB = (1− α) g, so we can

find the growth in technology as the residual. That is, solve (5.23) for gB to

get:

gB = gY − αgK − (1− α) (gh + n) . (5.24)



CHAPTER 5. NEOCLASSICAL 63

This equation has served as the basis for countless empirical studies of tech-

nical change, both cross-section and time series. Often, the relationship is

expressed in intensive form:

gB = gy − αgk − (1− α)gh. (5.25)

This expression shows technological growth in terms of per worker out-

put and capital growth. Solow (1957) was the first to try to quantify how

much of the change in y was due to A. He estimated the growth in B (which

is (1− α) gA) for the United States over time and found a result which we

see again and again: a surprising amount of the increase in y cannot be ex-

plained by changes in k (Solow assumed that gh = 0) . It appears to be due

to changes in A. Such results shift the focus of our inquiry to the processes

that generate A.

5.10 Conclusion

The neoclassical model has proven to be an extremely valuable tool for

thinking about growth. It has formed the basis for hundreds of theoretical

and empirical studies, and has enabled policy-makers to act constructively

with respect to issues of practical importance. Its shortcomings have pointed

the way to a fuller understanding of the fundamental issues that must be

addressed.

Appendix to Chapter 5

The marginal product of capital – or MPK – is defined to be the increase in

y per unit of increase in k :

MPK =
∆y

∆k
(5.26)

The MPK is a technical concept, and is derived from the production function

only. It is a very important concept in economics, because it determines the

rental rate on machinery and the interest rate on bonds.
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The marginal product of capital is another application of the derivative

that we have seen here and in Chapter 4. Instead of measuring the change

in a variable per unit of time, it measures the increase in output per unit of

capital (when the change is an infinitesimal fraction of a unit).

Linear Technology

If the production function has the simple, linear form y = Ak (as in the

model of Section 5.8 of Chapter 5) then the marginal product is just A.

The derivative MPK = ∂y
∂k = A follows straight from the rules of calculus

and can be verified easily numerically. For example, in Equation (5.21) set

A = 10 and k0 = 100 so that y0 = 1000. Now increase k by .1 units to

k1 = 100.1 and note that y rises by 1.0 unit. to y1 = 1001.

Cobb-Douglas Technology

If the production function is Cobb-Douglass, then we use (5.6): y = Bkα.

In that case, the marginal product of capital per person is given by the more

complicated formula for the derivative:

MPK =
∂y

∂k
= αBkα−1 (5.27)

Now, if we assume that B = 10 and k = 100, and add that α = .3, we find

that MPK = 0.119432.

This tells us that the marginal product of capital is 0.119432 units of

output, when the economy begins with 100 units of capital. That is, if you

began with 100 units of capital and increased the stock by a “very small”

amount, output would increase by 0.12 units per unit of capital increased.

By how much would y increase if you raised k by one full unit (as opposed

to a “very small” amount)? The answer is given by the following formula:

∆y = A(kα1 − kα0 ) = 10 ∗ (101.3 − 100.3) = 0.119016 (5.28)

It is close, but not the same.
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Payment to Owners of Capital

If the market for renting capital is competitive, then owners can charge a

rental rate equal to the marginal product of capital:

R = MPK = αBkα−1 (5.29)

Notice that how much you get for your capital depends on the amount of

capital per person in the economy already (k). The share of national income

that goes to owners of capital is RK
Y . Making the normal substitutions yields:

RK

Y
=
Rk

y
=
αBkα−1k

Bkα
= α (5.30)

So, given the production function, the owners of capital always received a

constant share of GDP (national income). That share is the same as the α

in the production function.



Chapter 6

Regression Analysis

6.1 Introduction

Regression analysis is a method that allows us to quantify the association

between two variables that we observe in nature or in experimentation. It

is a very common tool of research in economics, business, finance, political

science, and public policy. This chapter gives a brief conceptual descrip-

tion of the technique, as well as a practical guide to actually performing a

regression between two or more variables.

6.2 The Basic Theory Illustrated with Simple Data

Let us say that we think that nations with high levels of openness to trade

and investment (the variable x) are also countries with high growth (the

variable y). That is, we might hypothesize that the higher is x, the higher is

y. Indeed, we might go even farther and say that we suspect that the true

relationship between x and y is:

yi = α+ βxi + εi (6.1)

This is a linear relationship. Its meaning is that the growth rate of a country

i (yi) is determined in a common way in every country, so differences in
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growth arise only because of differences in the particular openness (xi) –

plus a random error term εi – for each country. The random error – whose

mean is zero – should be thought of as containing the influence of other

variables that we cannot observe (or have not bothered to observe).1

Table 6.1 gives some data (this is artificial data) on y and x for 20 dif-

ferent countries. Each pair of numbers represents a country for a particular

time span, say, 1960-1970. This data is graphed in Figure 6.1: it is repre-

sented by the solid dots. Each one is a country. Evidently, there is a positive

association between x and y. There are two questions that we would like to

have answered:

1. What is the “best” straight line through the points in Figure 6.1?

Knowing the answer to this question is the same as knowing the “best”

estimates of α and β in Equation (6.1) above.

2. How “good” is the “best” straight line? Is it very good? Or just barely

adequate? Or thoroughly inadequate?

Regression analysis can provide answers to both of these questions.

We do not need a lot of mathematics to understand conceptually what

regression analysis is all about. It is relatively simple, although putting it

into practice does require a lot of math – done by computers. Regression is

a technique that finds the α and β that minimize the sum of the differences

(after squaring them) from each point in Figure 6.1 to the straight line

defined by the α and β. In other words, any (α, β) pair defines a line like

that in Figure 6.1, and for any such line we could calculate all of the twenty

differences between each actual point and the line. Square them and add

them up. The best line is that which minimizes those squared differences.

In this course, we do not have the time to go through the mathematics

of just how this is done. There are many, many computer packages that

will run a regression for you, including Excel. The output you see in the

1In regression analysis, y is the“dependent variable”and x is the“independent variable”
or “explanatory variable”. Note that we are assuming that causality runs from x to y, but
that assumption might be false.



CHAPTER 6. REGRESSION ANALYSIS 68

Table 6.1: Data on Growth and Openness

Country y Growth Rate x Openness

Alland 0.77 0.3

Bobland 1.46 0.4

Chad 2.78 1

Doelandia 5.55 2.3

Evergreen 2.28 0.9

Floridia 7.22 3

Georgeland 2.78 1.2

Huland 4.64 2

Idia 1.97 0.8

Johnonia 5.73 2.5

Kelland 3.05 1.6

Lidia 2.53 1.3

Melland 4.91 2.1

Nyland 1.12 0.2

Orendia 1.81 0.1

Paland 2.61 0.5

Queenland 2.43 1.2

Rickland 4.25 1.7

Stemside 2.9 0.8

Twentia 4.87 2
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Figure 6.1: Regression Line and Actual Values

Appendix to this chapter is from a program called R. The regression line is

shown in Figure 6.1 along with the scatter plot. The estimated equation is:

ŷ = 0.712 + 1.985x (6.2)

The “ˆ” indicates that y defined by the straight line is an estimated or

predicted value, not the actual. The ŷ values lie exactly on the line; the

actual values of y are given by the solid dots. The error term does not

appear in (6.2) because the predicted error is zero.2

Look at the output in the Appendix. There, I ran four different, but

similar, regressions. Each set of results begins with the word “Call”, followed

by the regression formula. After that, there are three groups of results. Look,

first, at the group called “Coefficients”. In the column labeled “Estimate”

we see the two numbers in Equation (6.2). This tells us that if x = 0 (that

is, a closed economy) then growth would be only 0.71 percent per year for

2The data in Table 6.1 was not just randomly put together to look good. It was
generated by assuming the true relation was yi = .5 + 2xi + εi where the random error
had a mean of zero and a variance of .50. The computer actually generated 20 random
values, one for each country. The regression technique, notice, did not get to the truth!
But it came close, especially for β (the estimate of 1.98 is very close to the true value of
2).
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the average country. But, for every 1 unit increase in openness x, growth y

rises by 1.985 units. Therefore, openness is very helpful for growth. The β

coefficient (1.985) measures the strength of the effect running from x to y.

The other information shows us how much faith we can have in the

estimated relationship in Figure 6.1.

The column labeled “t value” shows how well the individual x-variables

do in explaining y. Here, we have two x-variables (we always count the

Intercept or constant term), and both do well. We are looking for a t-value

over 2.0, to say that the x-variable is “statistically significant” in helping to

explain y. We see that we easily have that in both cases, and in the case of

x (openness) it is extraordinarily significant, since 14.026 is far greater than

2.3

The next column, “Pr( > | t |)”, shows the probability that the relation-

ship between x and y is due merely to chance, not an underlying relationship

as in Equation (6.1). Here, we want to see numbers below 0.05 (5%), but

will often settle for numbers below 0.10 (10%). As a matter of arithmetic,

whenever the t-statistic is high, the P-value is low, so we really only have to

look at one of them.

The R2, the F-statistic, and the p-value reported in the third group are

a measures of the “overall goodness of fit” of the relationship. The R2 is

a number between 0 and 1, with 1 being “a perfect fit”. Usually, we are

content with an R2 value anywhere above .40, or even lower in some cases,

especially if we have only a few x variables. The value here of R2 = 0.9162

is quite high, indicating a very good fit, as seems clear from the figure. An

F-statistic over 10 is good; here it is almost 200. The p-value is virtually

zero. All of these point to a great fit: the variable x explains a lot of the

variation in the variable y.

We will discuss the other regression results in class.

3The t value is the ratio of the estimated coefficient in Column 1 and the Standard
Error (“Std. Error”) in Column 2.
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6.3 Conclusion

Regression is a powerful technique for analyzing data, and is really not hard

to put into practice. The data in this chapter was made up to illustrate how

to use the technique and was constructed to deliver good results. Often, our

results will not be so good.

In this simple example, by construction, there was only one variable x

(openness) that influenced y (the growth rate). That is usually not true:

normally, there are many variables to put on the right hand side of the

regression equation. This presents no problems, but the correct specification

is usually elusive, and does matter for the inferences that we are allowed to

draw.

Appendix: R Output

The following is typical output from the R statistical package.



Chapter 7

Source of Technology

7.1 Introduction

As more attention becomes focused on“technology”A, the more important it

is to think about what it is and how it is brought into existence. Our theories

so far are not very far advanced. There is currently a great divide in thinking

about A: does it happen by accident or is it actively sought? We take up this

question in various forms throughout the chapter. The question is hard to

answer because there is no easy way to define ”technological progress” or to

classify the different ways that new knowledge influences economic growth.

The following list shows some of the concepts that might conceivably have

an impact on economic growth. The list begins at the most general level

and flows down to the specific.

• Science

• Ideas

• Invention

• Innovation

• Human Capital

• Skill
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All of these are related to one another, and all of them are important for

economic progress. Which of these are most closely related to the concept

of “total factor productivity” — the parameter A — that appears in the

neoclassical production function?

The closest in concept toA is probably“innovation”, which is the widespread

application of an “invention”, which is itself the embodiment of an “idea”

whose generation depended upon past “scientific discovery”. Often the dif-

fusion of an innovation requires “human capital” or “skill” in individuals.

But where does innovation come from? It stands to reason that nations

with lots of human capital will innovate more than others. It is also log-

ical that countries with better property rights will have more innovation,

and perhaps more physical and human capital as well. On the other hand,

nations that innovate more probably produce incentives for individuals to

accumulate more human capital. We have, in short, a kind of “chicken and

egg” problem.

7.2 Basic Issues and Terminology

7.2.1 Rivalry vs Non-rivalry

One of the key concepts in modern growth theory involves the distinction

between ”rival goods” and ”non-rival goods”. Most inputs in the production

process are rival goods, meaning that by their very nature, if one firm uses

them another firm cannot. This is true of any particular machine or worker,

and thus may be identified with K and L in the neoclassical production

function of Chapter 5. Inventions or innovations — in general any idea —

are non-rival goods, since they can potentially be used by everyone simul-

taneously. A good example is a recipe, perhaps the secret formula in Coca

Cola. If the bottler in Atlanta is using this invention, it in no way stops the

bottler in Rio de Janeiro from using the exact same invention.

These concepts are related to the notion of diminishing returns in the

production process. Usually, rival goods show diminishing returns to in-

creases in their amounts while non-rival goods do not. Non-rival goods are
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at the heart of endogenous growth theory, especially the work of Paul Romer

(1986, 1987, 1990). This theory shifts the focus from the accumulation of

physical capital K to the generation of new ideas A. Potentially, this is

a huge shift, since the lack of diminishing returns opens the possibility of

growth without bound (see Section 6 of Chapter 5). Yet, until we settle on

a process for generating A we are not much farther along.

7.2.2 Excludability

Just because an invention could be used by many producers at once does

not mean it will be. If a firm can keep others from using its ideas, we say

that the innovation is excludable.

There are two ways that firms exclude others: secrecy and patent law.

Both of these are only imperfect mechanisms. The cotton gin is a good

example of how both can fail. Eli Whitney’s machine was easily “reversed

engineered” so it could not be kept secret. On the other hand, all of his

efforts to secure a patent came to nothing, since many of the gins were

slightly different, and it was not in the interest of southern agriculture to

restrict the invention. As a result, it appears that the courts were reluctant

to grant him the patent, and did not do so for many years.

Even when patents work, they may not be the most efficient way to

produce new ideas. There are several reasons for this. Among them: the

social return to many inventions is far higher than the private return to

a monopoly; others spend wasteful amounts in finding close alternatives,

in order to get high profits, rather than trying to find more revolutionary

new goods; patent-holders can block promising new research in allied fields;

there are better ways to finance research than “taxing” the good that gets

invented.

Nevertheless, it is difficult to think of a system that is clearly better than

the patent system. One alternative is the purchase of the patent for the new

idea by the government, who would then put it in the public domain. The

shortcomings of the patent system, and a possible improvement are discussed

in Michael Kremer (1998).
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The reason that excludability of non-rival goods is important is because

it matters greatly for the profit potential of a new idea. Once you have

the idea, if you can exclude others you become a monopolist. Profits fol-

low. And if profits exist, then people will spend time, effort, and resources

looking for ideas in the first place. This is quite relevant for the drug and

software industries, in which production costs for new drugs and programs

are extremely small, but up-front costs of developing them are enormous.

Only with some excludability will companies invest those resources. The

whole concept of R&D (research and development) relies on the ability to

recoup profits later. Excludability is the key to this process.

The combination of non-rivalry and excludability is at the center of those

theories that propose that A is the result of deliberate search. Patents,

research, and inventions represent the parts of the production function for

technology. There is, however, another view.

7.2.3 Technology by Accident: Externalities, Spillovers, and

Learning by Doing

At times inventions arise by accident. This may happen in one of two ways.

First, when one firm does research in a particular area, other firms may

benefit indirectly. Scientists often discuss their work with others in differ-

ent companies; results are presented at academic seminars; new goods are

observed at various stages of development. The technology that one firm

receives that it did not pay for (either through its own R&D or licensing)

is called a technological externality or a technological spillover. Spillovers

are unpriced, non-rival goods that arrive free to producers. By their very

nature, spillovers and externalities are hard to measure.

The second accidental way that ideas arrive is through learning-by-doing.

In the course of producing a good, firms simply get better at it. They find

new ways of doing things that reduce costs and improve the product. Again,

these innovations are free, in the sense that no one spent time or money

looking for them. The first rigorous treatment of this idea was by Kenneth

Arrow (1962).
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Paul Romer analyzed the case of externalities and growth (Romer, 1986).

His idea is that the capital investment by a small firm raised its own stock

of productive machinery k, but also increased the general knowledge of the

economy K = ηk. where η > 1 is the number of firms. The small firm

does not recognize the effect its investment has on the economy’s knowledge

stock, so the social return to k exceeds the private return to k.

This sort of model has two implications. First, firms do not perceive the

global external effect, so they invest too little in terms of society’s welfare.

Second, it is possible that there are social constant (or even increasing)

returns to capital. If so, the economy may never settle down to a steady

state, even if there is no technological progress in addition to the knowledge

created as a by-product from investment. That is, endogenous growth may

arrive by accident.

The basic idea is illustrated in Figure 7.1, which shows both the indi-

vidual firm’s perceived (or private) production function, and the actual (or

social) production function, assuming that there are increasing returns to

scale when the effect of K is counted. The social function rises at an in-

creasing rate; that perceived by each firm shows falling gains in output to

increasing capital.

7.2.4 Collective Choice and Public Goods

If externalities are important, then a case can be made for collective action,

in the form of provision of technology by the government (public provision).

One possibility was mentioned above: the purchase of patents by the gov-

ernment for public distribution free of charge.

Another possible way to achieve this is to fund research. This is already

done in many countries, including the US, which has several agencies (NSF,

NIH, NEA, etc) responsible for giving out research funds.

The existence of externalities has led some economists to advocate the

use of the government to coordinate investment plans in general, or to pro-

vide subsidies for particular “winner” industries. Only the government, ac-

cording to this argument, can simultaneously take into account all of the
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Figure 7.1: A Positive Knowledge Externality

many external benefits that exist across the millions of firms. The problems

with this approach are, however, severe. The government may not have the

correct information, or the ability to marshal and administer resources on a

grand scale. Perhaps most importantly, the government may have objectives

that conflict with those of the private sector, like war or corruption. Col-

lective action was tried in developing economies in many parts of the world

in the 50s and 60s as part of the strategy of import substitution. Henry

Bruton (1998) has described this approach in detail.

7.2.5 Institutions and Technology

It is impossible to overlook the fact that society’s institutions are an impor-

tant influence on the pace of change. Those societies with institutions that

favor and encourage innovation will achieve faster growth and higher living

standards compared to others. The theme of institutional arrangements and

growth is taken up by William Baumol (1990) and Kevin Murphy, Andrei

Shleifer, and Robert Vishny (1991). Hall and Jones (1999) show that there

is strong evidence to support the idea that institutions are the key to modern

growth.
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Protecting property rights and allowing profit are characteristics of eco-

nomically successful societies. It is interesting that many continue to violate

both. There is a large and growing literature on the political obstacles to lib-

eralization, although not a lot of it has been related to growth (McDermott,

1997, 1998)

Religion may be important. Max Weber proposed that Protestantism

was the key to capitalist development. Others have pointed out that the

causality may have run the other way.

7.3 Technology and Evolution

Evolutionary processes have been proposed for many biological and social

organisms. Joel Mokyr (1990) uses evolution to discuss the progress of

inventions through time.

Ideas evolve in leaps. Large ideas occur infrequently, and often by ac-

cident — the macro-inventions. Smaller ideas that improve the large im-

portant ones – the micro-inventions – occur much more routinely and as a

function of economic incentives. Therefore, technical change is continuous,

but its rate of increase is not: once in a while there will be a large jump in

productivity.

The world economy, as a result, may be characterized by “punctuated

equilibrium”, to borrow a phrase from evolutionary biology.

7.4 Historical Approaches to Technical Progress

Nathan Rosenberg (1982) has studied the concept of technical change as it

has changed through history.

7.4.1 Types of Innovation

First, there are two types: product innovation and process innovation.

Simon Kuznets and Joseph Schumpeter emphasized the former over the

latter, but most theoretical work has dealt with the latter since it is easier.
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Both also focused more on discontinuity and the jumps coming from large,

key inventions of new goods.

7.4.2 Continuity

Rosenberg emphasizes that there were several economic historians who thought

that a slow, continuous process was a better way of characterizing the history

of technology. These include Marx, A. P. Usher, and S. Gilfillan.

7.4.3 Direction of Innovation: Labor or Capital?

Did inventions in America tend to be labor-saving because labor was scarce

in the New World? This has been held true by several writers, but others

dispute it. This controversy has been re-opened by Romer (1996) who looks

at the relative growth of the US in the early part of our history.

7.4.4 Diffusion of Innovation

How do inventions diffuse through the world? Are they fast or slow? Again,

it depends on institutions, and perhaps the movement of the people them-

selves. There is a sizeable literature on the economics of imitation and

growth in developing countries.

7.5 Conclusion

This chapter has set forth the basic concepts of technological change and

growth. Policies, institutions, and external events are important to the

growth process only insofar as they affect the rate of technological change.

Technology stands behind every one of the various processes that we exam-

ine.



Chapter 8

Perpetual Growth and Finite

Resources

In this chapter, we present a model of growth with natural resources. It

turns out that steady growth is possible if technological change is sufficiently

strong. The production of light is a famous example of the power of technol-

ogy to overcome resource scarcity: the use of resources in producing lumens

has fallen tremendously as technology has allowed us to substitute wood,

for candles, for whale oil, to petroleum, to incandescent, to fluorescent, to

LEDs.

8.1 Extraction and Growth

The production function is very simple:

Y = ARβ (8.1)

where A is technology and R is the flow of resources. This is the amount

of newly produced resources every time period. Everything is produced by

resources only, with diminishing returns, but enhanced by technology. Per

capita output is:

y =
ARβ

N
(8.2)

80
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Let S be the stock of natural resources so:

R = −Ṡ = −dS
dt

(8.3)

Certainly, if R is constant, this cannot go on forever. It would not be sus-

tainable. So let’s adopt a “Zeno’s paradox” extraction rule:

R (t) = λS (t) (8.4)

where λ is a constant rate. This rule says: “Take a constant fraction of

what is left of the stock at any moment”. It may be easier if you think of

t as a year. So, in 2011 we would take, say, 2%, of the stock of resources

that was in existence at the beginning of 2011. Then, in 2012, we would

take another 2% of the stock that existed at the beginning of 2012. So, if

we started 2011 with a stock of size S0, at the end of 2012 we would have

S2 = (1− λ) (1− λ)S0.

It may seem paradoxical, but for any constant λ, you never run out of

the natural resource, even if λ = .80. If, for example, this went on for any

length of time T , we would still have ST = (1− λ)T S0 units of the resource

left. This number is always positive.

Although discrete time is usually easier to think about, continuous time

yields simpler results. So now we switch to continuous time.

Combine (8.3) and (8.4) to see that:

Ṡ

S
= −λ (8.5)

The stock S falls at the rate λ always. Now rearrange (8.4) to see that:

R

S
= λ (8.6)

Since λ is a constant, that means that R and S change at the same rate.

Since S is falling at the rate λ, then we know R is also falling at that rate:

gR =
Ṙ

R
= −λ < 0 (8.7)
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This just says we take out a smaller and smaller amount of resources every

year. Both the stock and the flow decline steadily.

The Appendix to this chapter gives us another way to think about the

extraction rule.

“Growth”means that the growth rate (i.e. rate of change) of y is positive.

From (8.2), we find the growth rate of y to be:

g = gA + βgR − gN
= gA − βλ− gN

For g to be positive forever, we need gA > βλ+gN . This does not seem that

difficult to achieve, especially if population growth is low. For example, if

β = .5, technical change is 4% a year, and population growth is 1.5% per

year, we need to extract our resources at any rate less than 5% to maintain

growth in living standards forever. That is, λ < .05 guarantees positive

growth.

To summarize, any value of λ is sustainable – S will never run out – but

not every value of λ is capable of maintaining growth in y forever.

8.2 Optimal λ

Do we need growth? How do we think of the “best” or “optimal” rate of

extraction?

One way to consider optimality is to add up all the current and future

output of the country (or the world). Usually, we discount future output

(which equals income) such that the farther away it is in the future, the

less valuable it is. This is very similar to the idea behind present value of a

future asset, but is different in that it contains an implicit valuation of the

utility of generations that are not yet born.

In discrete time, we would maximize:

JD =
∞∑
t=0

(
1

1 + ρ

)t
yt
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where ρ is the subjective rate of time preference. In continuous time we

would maximize:

JC =

ˆ ∞
0

y (t) e−ρtdt (8.8)

From the first section, we can write

y (t) = y (0) egt

where g ≡ gA − βλ− gN . Putting this into (8.8) gives us:

JC =

ˆ ∞
0

y (0) e−xtdt = y (0)

ˆ ∞
0

e−xtdt

where x ≡ ρ− g = ρ− gA + βλ+ gN . We can take the term y (0) out from

under the integral sign because it is a constant. It is necessary that x > 0

so that the integral converges.

We can express initial output as:

y (0) = A0 (λS0)β

because our rule says that R0 = λS0. The integral can be solved to get:

ˆ ∞
0

e−xtdt =
1

x

So that:

JC (λ) =
A0 (λS0)β

x
=

A0 (λS0)β

ρ− gA + βλ+ gN

What value of λ maximizes this expression? It is not at all clear from looking

at it. We can see, however, that an increase in λ is ambiguous without more

information about the parameter values, since it raises both the numerator

and the denominator.

We can use calculus to find the optimal value. Or, we can plug in num-

bers for the parameters other than λ and draw a graph. In Figure 8.1 we

show the graph of JC as a function of λ. We assume that A0 = 10 and

S0 = 1000. There is no population growth so gN = 0. We also assume that
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Figure 8.1: The Optimal λ

ρ = .04, gA = .02, and β = .50. It looks like the best value is around 4%.

In fact, the computer confirms that the government should set λ∗ = .04:

extraction should proceed at 4% of the available stock. In the first year, the

economy should extract 40 of the available 1000 units (S0). Notice that this

solution gives zero growth: g = 0. The best that we can do is consume the

same amount every year.

What if people did not discount the future so much? If we reduce the

rate of time preference to ρ = .03, then the optimum falls to λ∗ = .02.

Growth, in this case, is positive forever: g = .01.

Appendix: Extraction Rule Revisited

Let us consider extraction from a slightly different perspective. Assume the

government or business decides to begin extracting at the rate R (0) and has

committed to reducing the extraction flow continuously at the rate γ. Both

the initial value R (0) and γ are independent at this point. This means that

R (t) = R (0) e−γt . How much resource would be extracted by the end of
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time (infinity)? Call that amount S∞. It is:

S∞ =

ˆ ∞
0

R (t) dt =

ˆ ∞
0

R (0) eγtdt (8.9)

Now, solve the integral to get:

S∞ =
R (0)

γ
(8.10)

So the greater the initial rate of extraction R (0) or the smaller the rate of

decline in the rate γ, the more will be extracted in total.

The problem is that the world may not have an amount as big as S∞.

If we want to extract exactly the amount we have S0 in the limit of time,

then we must set S0 = S∞ and solve (8.10) to get:

R (0) = γS0 (8.11)

But this is precisely the rule we have proposed, except that we called the

rate λ before (not γ).

For any country the stock S0 is given (but may be uncertain) and either

γ or R0 may be chosen independently, subject to 0 < γ < 1. The other is

then determined by (8.11). After that, the country must commit to reducing

R each period according to the commitment R (t) = R (0) e−γt. If they do,

then the resource will last forever.



Chapter 9

The Limits to Wage

Equalization Across

Countries

9.1 Introduction

Wages are very different across countries. It is important to think about

why these differentials arise and what we can do about them. Among the

most important questions may be this: has globalization reduced the wage

differential or increased it?

It turns out that we can provide answers to this question and others

using the basic neoclassical production function and the assumption that

markets for factors (capital and labor) are competitive.

9.2 Comparing Separate Economies

At first, let us consider two economies that are completely separate. This

means that we can analyze relative income, wages, and returns to capital

in each country independently. Later, we allow globalization in the form of

movement of capital. We will then see how this affects wages and returns

to capital in the two countries.

86
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9.2.1 Production and Relative Per Capita Income

We begin with the production functions in two countries, an industrial coun-

try (the US, for example) and a developing country (perhaps India). Let us

write them as follows:

YN = ANK
α
N (hNLN )1−α (9.1)

YS = ASK
α
S (hSLS)1−α (9.2)

The subscript “N” stands for the industrial north and the subscript “S”

stands for the southern LDC. As usual, we have the following interpretations

of each variable: A is technology (broadly interpreted), K is capital, L is

labor (number or hours), and h is the skill (education) level of each person.

Define the aggregate human capital stock as:

H ≡ hL ⇒ h =
H

L
(9.3)

and the capital-labor ratio as usual: k ≡ K
L . As always, our basic welfare

criterion is output per person, y ≡ Y
L . For the two countries y can be written

using (8.4) as follows:

yN = ANk
α
Nh

1−α
N (9.4)

yS = ASk
α
Sh

1−α
S (9.5)

I will call the relative per capita income in the two countries:

zy =
yN
yS

(9.6)

We now derive expressions for the returns to capital and labor.

9.2.2 Return to Capital

The return to capital r – the rental price that a firm would pay for a machine

– is the same as the marginal product of capital. As we noted in Chapter

5, the marginal product of capital is the derivative of Y with respect to K.
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For either country j, it is given by:

rj = αAj

(
hj
kj

)1−α

j = (N,S) (9.7)

Countries with more human capital h per machine k have higher returns to

physical capital k . It certainly makes sense that your machinery (that is,

capital) is more productive when your workers are more highly educated.

9.2.3 Return to Labor

The return to labor is the real wage – the rental price for worker services.

In a model with human capital we must distinguish between the wage of a

worker wL and the wage of a unit of human capital, w. For an individual

worker they are related as follows:

w = wb ∗ h (9.8)

Equation (9.8) says that a worker earns a base wage wb (the same as the wage

of a unit of human capital) times the amount of human capital she possesses.

Workers in all countries have different levels of human capital, determined

by their education, experience, and ability. A worker with human capital

level x makes x times more than a worker with only 1 unit of human capital.

This is true of both countries, so we can write:

wj = wb,jhj j = (N,S) (9.9)

where hj is the human capital of an average worker in Country j for j =

(N,S). The question is: how do we find the equilibrium values of the base

wages wb,N and wb,S?

The base wage w is the marginal product of H (the derivative of Y

with respect to H). Using the production functions (9.1) and (9.2) and the
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definition (9.3) these give:

wj = (1− α)Aj

(
kj
hj

)α
j = (N,S) (9.10)

There are two profound implications of the above equations. The first is

that the more capital (machines, inventories, etc.) a nation has, the higher

will be its wage. The second is that the more human capital (that is, skilled

workers) a nation has, the lower will be the wage for any particular skill

level. This does not mean that education is bad. If everyone gets more

skill or education, wages will rise. How can that be true? Look at (9.8). If

everyone’s h rose, w would fall, but wh would rise. That is, w falls by α

percent (where α < 1) of the rise in h.

The ratio of the base wage in the industrial country to that in the LDC

can be found from (9.10):

wN
wS

=
AN
AS

(
kNhS
kShN

)α
(9.11)

Use (9.4), (9.5), and (9.6) to express it compactly as:

wN
wS

= zy
hS
hN

(9.12)

It is important to emphasize that the ratio above is for base wages. For

actual wages, use (9.12) along with (9.9) to see that:

wL,N
wL,S

=
wNhN
wShS

= zy (9.13)

This result is true for all of our cases in this section that deals with two

separate economies. The ratio of actual wages in the two countries is the

same as the ratio of per capita incomes.
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9.2.4 Examples and Cases

Our purpose in the rest of this section is to calibrate the values of A, K, and

h in each country to see what we can infer about relative income, wages,

and the return to capital when the countries are separate. For our case, we

take the US for the industrial country and India for the LDC (a popular

comparison). Our main fact is from the Summers-Heston-Aten data set.

There we see that in 2000 the US y was 33,308 I$ whereas India’s y was only

2,480 I$. Thus, the ratio of the two was 13.43. For simplicity of exposition,

we round this up and set

zy = 14

Counting all kinds of income, US residents were about 14 times better off

than their Indian counterparts.

9.2.4.1 Case 1: A = 1 and h=1 in Both Countries

When the neoclassical growth model was first being developed and applied,

it was customary to ignore h (that is, set hn = hS = 1) and assume that

technology was the same all over the world (AN = AS = 1). With those two

assumptions and assuming that α = 1
3 (again, a standard number) we use

(9.4) – (9.6) to write:

zy = 14 =

(
kN
kS

) 1
3

(9.14)

Solve for kN to get:

kN = 143kS = 2, 744kS (9.15)

Can the US really have 2,744 times more capital per person than India? This

would appear to be way too high. But let’s suspend our disbelief for a second

and ask: if this were indeed true, what does it imply about wages and the

return to capital? Use (9.7), and our assumed values AN = AS = hN = hS ,

to get:

rS
rN

=

(
kN
kS

) 2
3

=
(
143
) 2

3 = 196 (9.16)
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This says that the return to capital should be about 196 times greater in

India than the US! Again, this seems unreasonable large. If this were true,

why doesn’t capital rush to India? Why settle for such a low return in the

US and Europe?

Since hN = hS = 1, in this case, base wages and actual wages would be

the same. Moreover, they would have the same relative value as income:

wN
wS

= zy = 14 (9.17)

This result comes straight from (9.12) and (9.13) and means that a worker

who lived in India but had the same human capital as a US worker could

increase her wage 14-fold if she moved to the US. That may explain why

we see so many people of all education levels trying to move to the US and

Europe.

9.2.4.2 Case 2: More Human Capital in the Industrial Country

We know that the typical worker in the US has more human capital than her

counterpart in India. Robert Barro and Jong-Wha Lee have estimated that

in 2000 the typical worker in the US had 12.25 years of schooling, compared

to 4.77 years for a worker in India. (See Robert Barro’s website at Harvard

to get this data for many countries and years.) We may infer from this that

average human capital is about 2.57 times greater in the US than India. Let

us round down and set:
hN
hS

= 2.5 (9.18)

Now the capital stock in the US need not be so huge to generate the 14-fold

per capita income gap. That is, a part of the income gap can be explained

by differences in human, not physical, capital. Using (9.6) and (9.18), but

still assuming AN = AS = 1 we now find:

kN
kS

= (zy)
3
(
hS
hN

)2

=
143

2.52
= 439 (9.19)

This is more reasonable, but a 439 multiple is still vary large.
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The return to capital in India would be still quite a bit larger than in

the US. Begin with (9.7) then use (9.18) and (9.19) to eliminate the ratios
hN
hS

and kN
kS

to get:

rS
rN

=

(
hSkN
hNkS

)1−α
=

(
439

2.5

) 2
3

= 31.41 (9.20)

Now the return to capital is only about 31 times greater in India than in

the US.

As for base wages, the gap is also smaller. Using (9.12), we get:

wN
wS

= zy
hS
hN

=
14

2.5
= 5.6 (9.21)

We must emphasize that these are base wages; that is, the wage for a person

with one unit of human capital. The ratio of average wages is still 14 (wL =

wh) since the average US worker has 2.5 times the human capital of her

Indian counterpart. Consider a doctor, for example, whose h = 22, say. In

the US, a doctor would make about $100,000, let’s say. According to (9.21),

the same doctor in India would make $100,000/5.6 = $17,857, assuming they

had the same human capital. That is, for comparing people with the same

human capital, we use the ratio of base wages. To compare countries, where

the average human capital can be quite different, we use (9.13) and compare

actual average wages.

As Easterly emphasizes several times in his book The Elusive Quest

for Growth, since the US has over twice as much human capital as India

(per worker) the price of a unit of human capital (the base wage) should

be correspondingly smaller in the US – at least if we maintain the strict

neoclassical assumption of diminishing returns to H. That may not be

reasonable, as Easterly himself constantly emphasizes. The base wage gap

is still positive in favor of the US – and sizeable – even after we account

for human capital. This is so because there is considerably more physical

capital per person k in the US, too, which raises the productivity of human

capital and makes educated workers at all levels 5.6 times more productive

than in India.
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9.2.4.3 Case 3: A and h Greater in the Industrial Country

We now come to our last case involving two isolated economies. It may seem

unreasonable to assume that in India and the US technology is the same:

AN = AS . We may instead believe that technology (TFP or total factor

productivity) is better in the US, especially when we interpret it broadly

to include property rights, justice, financial markets, security, and other

relevant institutions. Accordingly, in this section, we assume that:

AN
AS

= 2.0

Now, we use (9.4) – (9.6) to arrive at the following general formulation:

kN
kS

= (zy)
1
α

(
AS
AN

) 1
α
(
hS
hN

) 1−α
α

=

(
14

2

)3 ( 1

2.5

)2

= 54.88 (9.22)

So now we have the relative capital-labor ratio down to 55 times larger in

the US. It is difficult to know if that is, in fact, reasonable, but it seems

more realistic than our earlier results.

Using (9.7) we may express the relative return to capital as:

rS
rN

=
AS
AN

(
hS
hN

kN
kS

)1−α
= 3.92 (9.23)

We know all of the ratios in (9.23), including that for k from (9.22), and

if we plug them in we get the answer noted on the right above, 3.92. This

is much smaller than our previous results and seems more reasonable. The

return to capital is higher in India, but only by a factor of 4 now.

Now use (9.22) in (9.23) to get the following expression:

rS
rN

= (zy)
1−α
α

(
AS
AN

) 1
α
(
hS
hN

) 1−α
α

= 3.92 (9.24)

This has the advantage of involving only quantities for which we have data
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or educated guesses. Equation (9.24) is the expression that corresponds to

(9.12) and (9.13), the general base wage and average wage ratios. That is,

it is the most general form for two isolated economies.

9.3 Globalization: Capital Mobility and Wages

So far, we have assumed total separation between the two countries. Glob-

alization, however, is about the movement of capital and expertise from one

country to another. In all three of our cases, rS > rN , so capital will flow

from the industrial country to the developing country, provided there are no

capital controls in either country. In theory, capital will continue to flow to

India until rS = rN . This is what we shall assume.1

We shall continue to assume that the parameters in Case 3 hold. Namely,

that AN = 2.0AS and that hN = 2.5hS . We do not assume, however, that

zy = 14. The new value of zy is determined endogenously when capital is

free to move.

First, we see what rS = rN implies about relative capital-labor ratios.

Use (9.7) to find:

kN
kS

=
hN
hS

(
AN
AS

) 1
1−α

(9.25)

Using the parameters from Case 3 above — which we consider our most

realistic set of parameters — this yields:

kN
kS

= 2.5 ∗
√

2 = 7.07 (9.26)

Even with complete capital mobility, there will be more capital per person

in the US than in India. This result is due to the assumption of better

technology and more schooling in the US. Both of these make capital more

productive in the US, so that if there were equal amounts of k, US capital

would be more productive and earn a higher return. With diminishing re-

turns to k, in equilibrium more capital remains in the US. Still it is a much

1We must remember, however, that the failure of capital to move in sufficient amounts
remains a mystery.
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smaller gap than in our isolation cases in Section 2.

What does this imply about zy, relative incomes in the two places? Just

use (9.25) in the right-hand side of (9.6) to get:

zy =
hN
hS

(
AN
AS

) 1
1−α

=
kN
kS

(9.27)

This result is quite interesting. The ratio of real output per worker is the

same as that of capital stocks. This means that mobility of capital brings

the disparity in income down from 14 to 7.07. It is effectively cut in half.

Notice that if Case 1 were applicable (that is, AN = AS = hN = hS = 1)

then complete capital mobility would result in kN = kS – evident from (9.25)

– which makes real incomes equal by (9.27).

What does capital mobility imply about real base wages in the two coun-

tries? Equations (9.12) and (9.13) are still valid. Using the former, and our

new value of zy, and the relative h value from Case 3, the base-wage ratio

is:
wN
wS

= zy
hS
hN

=
7.07

2.5
= 2.83 (9.28)

Compare this to (9.21). The base-wage gap is down to about half of its value

without capital mobility. Under what conditions would the gap disappear?

We see from (9.27) and (9.28) that if technology were the same in the two

nations – AN = AS – the wage gap would be eliminated. This happens

in the presence of capital mobility even though labor cannot move between

countries at all.

It is only base wages that would be equalized. The ratio of average wages

remains at 7.07 according to (9.13) since the US would have higher average

human capital per worker. Arguably, however, the base wage ratio is the

more important gap.

9.4 Conclusion

We have seen that the base wage gap depends on two main things. First, is

the LDC economy open or closed to capital flows? Second, is LDC technol-
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ogy A similar to, or much lower than, that in the industrial nation?

Only when capital is fully mobile and technology identical will the base-

wage gap disappear. Add to that the condition that human capital be the

same and the actual average wage gap will also disappear.



Chapter 10

Guidelines for the Empirical

Project

10.1 Introduction

The purpose of this project for the student to begin to use economic data

for research. The student will use the R programming language to analyze a

particular economic question. Both R and its companion R Studio are free.

10.2 The Question

Every research project begins with a question. Data must be available to

help find the answer. The best way to proceed is to take a question that

can be looked at across many different countries. For example, does a large

population help or hinder growth? Or, how much did high rates of female

education expenditure help countries grow between 1970 and 2010? This is

what is known as “cross-section” analysis.

10.3 The Data

There are two main sources of data for growth and real output, the Penn

World Table (PWT, v9.0) and the World Bank (WDI). This data is free

97

https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/
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and can be downloaded easily. You should go to the PWT website at the

University of Groningen to explore the data available there (PWT). Also,

see the World Bank website (WDI).

There is, however, far more data on the web. For example, the United

Nations publishes a lot of free data. For studies of culture, check out the

World Values Survey (WVS). There is no reason to limit yourself. Just check

with me before using any data that you find on the internet.

10.4 Organization

The project should be organized along the following lines.

1. Introduction. (A paragraph or two). Explain the question and why

you think it is important.

2. Descriptive results. Here you should present a few descriptive graphs

and tables using R. (About 2 pages, not counting the graphs and

tables.)

3. Econometric analysis. Here you present your regression results. (About

2 pages, not counting tables.)

4. Conclusion. (1 page.)

10.5 Excel and R

Statistical software can read data from text files and Excel files. So, the first

step in data analysis, after the data is downloaded from the net, is to put

it in Excel. Usually, this is not a problem since most internet data is stored

in Excel files.

Table 10.1 shows the form the Excel file should be in to be read most

easily by R. (There should be a lot more rows in your data, though.) The

first column is the country name; the second column is a three-letter code

that identifies the country. All of this data is for one year, 2002, so the

year column is optional, but useful to remind you of what the year is for

https://www.rug.nl/ggdc/productivity/pwt/
https://data.worldbank.org/data-catalog/world-development-indicators
http://www.worldvaluessurvey.org/wvs.jsp


CHAPTER 10. GUIDELINES FOR THE EMPIRICAL PROJECT 99

Table 10.1: Data in the Proper Form

country isocode year cg yprch openk

Afghanistan AFG 2002 20.89437 525.7682 136.7149

Albania ALB 2002 20.57526 4134.563 65.64388

Algeria DZA 2002 25.43648 5723.53 66.85087

Antigua and Barbuda ATG 2002 65.94318 15274.98 126.0218

Argentina ARG 2002 17.73209 9561.587 19.36427

Armenia ARM 2002 22.62712 4338.086 83.46104

Australia AUS 2002 15.59193 27120.89 44.41226

Austria AUT 2002 15.9632 27346.25 95.30912

Azerbaijan AZE 2002 36.39618 3851.348 102.3431

Bahamas, The BHS 2002 27.87347 18377.36 107.9666

Bahrain BHR 2002 18.44424 18884.86 168.2105

Bangladesh BGD 2002 13.78397 2049.461 32.07835

Barbados BRB 2002 13.74614 15449.81 103.0969

Belarus BLR 2002 27.6814 11770.66 149.5606

Belgium BEL 2002 19.37966 25106.27 164.5674

Belize BLZ 2002 38.79317 6831.726 105.7954

Benin BEN 2002 10.71865 1311.53 55.67712

Bermuda BMU 2002 16.56303 33958.16 86.55295

Bhutan BTN 2002 31.80045 846.4426 69.02751

Bolivia BOL 2002 19.10262 2971.438 48.10411

Bosnia and Herzegovina BIH 2002 30.19095 3490.883 69.19069

Botswana BWA 2002 31.19615 7727.325 88.91344

Brazil BRA 2002 22.68933 6949.792 23.84154

your project. The important thing is that each column should have a label

heading and there should be no blank columns (blank rows are OK). Once

one has the data in this form, save it as a comma-delimited (.csv) file. This

way it can be easily read into R.

I will give you a template for the data in Excel as well as a template

for R code to get you started. Look for it on Blackboard or my webpage

(McD).

http://econintel.net
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10.6 Conclusion

The purpose of the empirical project is to get the student involved in basic

economic research. By formulating the question, obtaining the data, and

analyzing the data with basic graphical and regression methods, the student

will get a good idea about the value of the scientific method. It is one thing

to propose an idea or theory, and another to find support for it in the data

generated by the world.


	Growth: Issues
	Introduction
	The Sources of Economic Growth
	Factors That Contribute to the Basic Processes
	Population and Scale
	Openness and Geography
	Government

	Conclusion

	International Comparison
	Introduction
	The Exchange Rate
	A Basic Measure: The Big Mac Factor
	The International Comparison Project
	Comparing Across Time As Well as Space
	Other Data: World Bank and Maddison 
	Conclusion
	Appendix A: The Dollar-Based PPP-ER
	Appendix B: The Method of Parente and Prescott

	Principal Eras of Economic History
	Introduction
	Eras
	Hunting and Gathering 
	Neolithic Agriculture
	River Empires
	Classical
	Dark Ages
	Revival
	Black Death
	Renaissance and Enlightenment
	Industrial Revolution and Expansion
	Scientific Revolution and Modern Growth

	Conclusion

	Rates of Growth
	Introduction
	Growth Rates: Discrete and Continuous
	Exponential Growth Rates in Practice
	Natural Logs
	The Population of Europe
	Negative Exponential Growth
	Instantaneous Growth Rates
	Related Concepts
	Present Value
	Annuity

	Conclusion

	Neoclassical
	Introduction
	Equations of Change
	Production
	Growth Equation for k
	The Steady State
	The Growth Rate of k
	Continuous Technical Change
	Endogenous Growth: A Simple Alternative Model
	Growth Accounting
	Conclusion

	Regression Analysis
	Introduction
	The Basic Theory Illustrated with Simple Data
	Conclusion

	Source of Technology
	Introduction
	Basic Issues and Terminology
	Rivalry vs Non-rivalry
	Excludability
	Technology by Accident: Externalities, Spillovers, and Learning by Doing
	Collective Choice and Public Goods
	Institutions and Technology

	Technology and Evolution
	Historical Approaches to Technical Progress
	Types of Innovation
	Continuity
	Direction of Innovation: Labor or Capital?
	Diffusion of Innovation

	Conclusion

	Perpetual Growth and Finite Resources
	Extraction and Growth
	Optimal 

	Wages Across Countries
	Introduction
	Comparing Separate Economies
	Production and Relative Per Capita Income
	Return to Capital
	Return to Labor
	Examples and Cases
	Case 1: A = 1 and h=1 in Both Countries
	Case 2: More Human Capital in the Industrial Country
	Case 3: A and h Greater in the Industrial Country


	Globalization: Capital Mobility and Wages
	Conclusion

	Guidelines for the Empirical Project
	Introduction
	The Question
	The Data
	Organization
	Excel and R
	Conclusion


